File size: 7,407 Bytes
fde2cd5 002aee0 fde2cd5 8267c46 fde2cd5 8267c46 fde2cd5 8267c46 fde2cd5 8267c46 fde2cd5 8267c46 fde2cd5 8267c46 12d8a9e 8267c46 fde2cd5 8267c46 fde2cd5 002aee0 fde2cd5 8267c46 002aee0 fde2cd5 002aee0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
---
license: apache-2.0
datasets:
- deepvk/GeRaCl_synthethic_dataset
language:
- ru
base_model:
- deepvk/USER2-base
pipeline_tag: zero-shot-classification
---
# GeRaCl-USER2-base
**GeRaCl** is a **Ge**neral **Ra**pid **Cl**assifer designed to perform zero-shot classification tasks primarily on Russian texts.
This is a model with 155M parameters that is build on top of the [USER2-base](https://huggingface.co/deepvk/USER2-base) sentence encoder (149M) and is fine-tuned for zero-shot classification task.
What is Zero‑Shot Classification?
Zero‑shot text classification lets a model assign user‑supplied labels to a text without seeing any training examples for those labels. At inference you simply provide the candidate labels as strings, and the model chooses the most appropriate one.
## Performance
To evaluate the model, we measure quality on multiclass classification tasks from the `MTEB-rus` benchmark.
**MTEB-rus**
| Model | Size | Type | Mean(task) | Kinopoisk <nobr>(3 classes)</nobr> | Headliness (6 classes) | GRNTI <nobr>(28 classes)</nobr> | OECD <nobr>(29 classes)</nobr> | Inappropriateness <nobr>(3 classes)</nobr> |
| -------------------------------- | ----- | ----------- | ---------- | --------- | --------- | -------- | -------- | ----------------- |
| `GeRaCl-USER2-base` | 155 M | GeRaCl | **0.65** | 0.61 | 0.80 | **0.63** | **0.48** | 0.71 |
| `USER2-base` | 149 M | Encoder | 0.52 | 0.50 | 0.65 | 0.56 | 0.39 | 0.51 |
| `USER-bge-m3` | 359 M | Encoder | 0.53 | 0.60 | 0.73 | 0.43 | 0.28 | 0.62 |
| `multilingual-e5-large-instruct` | 560 M | Encoder | 0.63 | 0.56 | **0.83** | 0.62 | 0.46 | 0.67 |
| `mDeBERTa-v3-base-mnli-xnli` | 279 M | NLI-encoder | 0.45 | 0.54 | 0.53 | 0.34 | 0.23 | 0.62 |
| `bge-m3-zeroshot-v2.0` | 568 M | NLI-encoder | 0.60 | **0.65** | 0.72 | 0.53 | 0.41 | 0.67 |
| `Qwen2.5-1.5B-Instruct` | 1.5 B | LLM | 0.56 | 0.62 | 0.55 | 0.51 | 0.41 | 0.71 |
| `Qwen2.5-3B-Instruct` | 3 B | LLM | 0.63 | 0.63 | 0.74 | 0.60 | 0.43 | **0.75** |
**How comparison was performed**
1. NLI‑Encoders were used via 🤗 ```pipeline("zero-shot-classification")```
Models such as mDeBERTa-v3-base-mnli-xnli and bge-m3-zeroshot-v2.0 are pre‑trained on Natural Language Inference corpora.The Hugging Face pipeline converts classification into NLI hypotheses like:
Premise: text
Hypothesis: "This text is about {label}."
The model scores each (premise, hypothesis) pair independently; the label with the highest entailment probability wins.
2. LLMs prompted for classification
Large‑language models such as Qwen2.5‑1.5B and Qwen2.5‑3B are queried with a simple classification prompt:
```
PROMPT = """Ниже указан текст. Ты должен присвоить ему один из перечисленных ниже классов.
Текст:
{}
Классы:
{}.
Твой ответ должен состоять только из выбранного класса, ничего другого.
"""
```
3. GeRaCl architecture. Detailed information about this architecture is located in **Training Detais** section.
## Installation
Clone and install directly from GitHub:
```bash
git clone https://github.com/deepvk/geracl
cd geracl
pip install -r requirements.txt
```
Verify your installation:
```python
import geracl
print(geracl.__version__)
```
## Usage
#### Single classification scenario
```python
from transformers import AutoTokenizer
from geracl import GeraclHF, ZeroShotClassificationPipeline
model = GeraclHF.from_pretrained('deepvk/GeRaCl-USER2-base').to('cuda').eval()
tokenizer = AutoTokenizer.from_pretrained('deepvk/GeRaCl-USER2-base')
pipe = ZeroShotClassificationPipeline(model, tokenizer, device="cuda")
text = "Утилизация катализаторов: как неплохо заработать"
labels = ["экономика", "происшествия", "политика", "культура", "наука", "спорт"]
result = pipe(text, labels, batch_size=1)[0]
print(labels[result])
```
#### Multiple classification scenarios
```python
from transformers import AutoTokenizer
from geracl import GeraclHF, ZeroShotClassificationPipeline
model = GeraclHF.from_pretrained('deepvk/GeRaCl-USER2-base').to('cuda').eval()
tokenizer = AutoTokenizer.from_pretrained('deepvk/GeRaCl-USER2-base')
pipe = ZeroShotClassificationPipeline(model, tokenizer, device="cuda")
texts = [
"Утилизация катализаторов: как неплохо заработать",
"Мне не понравился этот фильм"
]
labels = [
["экономика", "происшествия", "политика", "культура", "наука", "спорт"],
["нейтральный", "позитивный", "негативный"]
]
results = pipe(texts, labels, batch_size=2)
for i in range(len(labels)):
print(labels[i][results[i]])
```
## Training details
This is the base version with 155 million parameters, based on [`USER2-base`](https://huggingface.co/deepvk/USER2-base) sentence encoder. This model uses similar to GLiNER idea, but it has only one vector of similarity scores instead of a full matrix of similarities.
Compared to the USER2-base model, there are two additional MLP layers. One is for the text embeddings and another is for the classes embeddings. You can see the detailed model's architecture on the picture below.
<img src="assets/architecture.png" alt="GeRaCl architecture" width="600"/>
The training set is built entirely from splits of the [`deepvk/GeRaCl_synthethic_dataset`](https://huggingface.co/datasets/deepvk/GeRaCl_synthethic_dataset) dataset. It is a concatenation of three sub-datasets:
- **Synthetic classes part**. For every training example we randomly chose one of the five class lists (`classes_0`…`classes_4`) and paired it with the sample’s text. The validation and test splits were added unchanged.
- **RU-MTEB part**. The entire `ru_mteb_classes` dataset was added to the mix.
- **RU-MTEB extended part**. The entire `ru_mteb_extended_classes` dataset was added to the mix.
| Dataset | # Samples |
|----------------------------:|:----:|
| [GeRaCl_synthethic_dataset/synthetic_classes_train](https://huggingface.co/datasets/deepvk/GeRaCl_synthethic_dataset/viewer/synthetic_classes_train) | 99K |
| [GeRaCl_synthethic_dataset/ru_mteb_classes](https://huggingface.co/datasets/deepvk/GeRaCl_synthethic_dataset/viewer/ru_mteb_classes/) | 52K |
| [GeRaCl_synthethic_dataset/ru_mteb_extended_classes](https://huggingface.co/datasets/deepvk/GeRaCl_synthethic_dataset/viewer/ru_mteb_extended_classes) | 93K |
| **Total** | 244K |
## Citations
```
@misc{deepvk2025geracl,
title={GeRaCl},
author={Vyrodov, Mikhail and Spirin, Egor and Sokolov Andrey},
url={https://huggingface.co/deepvk/GeRaCl-USER2-base},
publisher={Hugging Face}
year={2025},
}
``` |