dev02chandan commited on
Commit
c8bcd48
·
verified ·
1 Parent(s): b1915a3

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +42 -0
README.md ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: scikit-learn
4
+ tags:
5
+ - tabular-regression
6
+ - sales-forecast
7
+ - gradient-boosting
8
+ - cross-sectional
9
+ datasets:
10
+ - dev02chandan/sales-forecast-dataset
11
+ metrics:
12
+ - rmse
13
+ - mae
14
+ - mape
15
+ - smape
16
+ ---
17
+
18
+ # Sales Forecast Model (GBR)
19
+
20
+ **Task:** Predict `Product_Store_Sales_Total` from product and store attributes.
21
+ **Data:** dev02chandan/sales-forecast-dataset (`raw/SuperKart.csv` with processed train/test under `processed/`).
22
+ **Model:** GradientBoostingRegressor selected via GroupKFold CV on `Store_Id`.
23
+
24
+ ## Test Metrics
25
+ - CV RMSE: 1157.1346565946897
26
+ - RMSE: 1600.05837632221
27
+ - MAE: 1405.5687461646362
28
+ - MAPE: 27.069205177956633
29
+ - sMAPE: 32.25248697544593
30
+
31
+ ## Usage
32
+ ```python
33
+ from huggingface_hub import hf_hub_download
34
+ import joblib, pandas as pd
35
+
36
+ pkl_path = hf_hub_download(repo_id="dev02chandan/sales-forecast-model", filename="model.pkl", repo_type="model")
37
+ model = joblib.load(pkl_path)
38
+
39
+ # X must contain the same columns used in training (one-hot is inside the pipeline)
40
+ # Example:
41
+ # X = pd.DataFrame([...])
42
+ # y_pred = model.predict(X)