Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
library_name: scikit-learn
|
| 4 |
+
tags:
|
| 5 |
+
- tabular-regression
|
| 6 |
+
- sales-forecast
|
| 7 |
+
- gradient-boosting
|
| 8 |
+
- cross-sectional
|
| 9 |
+
datasets:
|
| 10 |
+
- dev02chandan/sales-forecast-dataset
|
| 11 |
+
metrics:
|
| 12 |
+
- rmse
|
| 13 |
+
- mae
|
| 14 |
+
- mape
|
| 15 |
+
- smape
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
# Sales Forecast Model (GBR)
|
| 19 |
+
|
| 20 |
+
**Task:** Predict `Product_Store_Sales_Total` from product and store attributes.
|
| 21 |
+
**Data:** dev02chandan/sales-forecast-dataset (`raw/SuperKart.csv` with processed train/test under `processed/`).
|
| 22 |
+
**Model:** GradientBoostingRegressor selected via GroupKFold CV on `Store_Id`.
|
| 23 |
+
|
| 24 |
+
## Test Metrics
|
| 25 |
+
- CV RMSE: 1157.1346565946897
|
| 26 |
+
- RMSE: 1600.05837632221
|
| 27 |
+
- MAE: 1405.5687461646362
|
| 28 |
+
- MAPE: 27.069205177956633
|
| 29 |
+
- sMAPE: 32.25248697544593
|
| 30 |
+
|
| 31 |
+
## Usage
|
| 32 |
+
```python
|
| 33 |
+
from huggingface_hub import hf_hub_download
|
| 34 |
+
import joblib, pandas as pd
|
| 35 |
+
|
| 36 |
+
pkl_path = hf_hub_download(repo_id="dev02chandan/sales-forecast-model", filename="model.pkl", repo_type="model")
|
| 37 |
+
model = joblib.load(pkl_path)
|
| 38 |
+
|
| 39 |
+
# X must contain the same columns used in training (one-hot is inside the pipeline)
|
| 40 |
+
# Example:
|
| 41 |
+
# X = pd.DataFrame([...])
|
| 42 |
+
# y_pred = model.predict(X)
|