File size: 3,799 Bytes
c36e5fc
 
 
 
 
 
 
 
 
 
 
da2851e
c36e5fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da2851e
c36e5fc
da2851e
 
c36e5fc
da2851e
c36e5fc
da2851e
c36e5fc
da2851e
 
 
c36e5fc
da2851e
 
 
 
c36e5fc
da2851e
c36e5fc
da2851e
c36e5fc
da2851e
 
 
 
 
 
 
 
 
 
 
 
 
 
c36e5fc
 
da2851e
 
 
 
 
 
c36e5fc
 
da2851e
 
c36e5fc
 
 
 
 
 
 
da2851e
c36e5fc
 
 
 
 
 
 
da2851e
 
c36e5fc
 
da2851e
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
license: other
language:
- en
tags:
- causal-lm
- code
metrics:
- code_eval
library_name: transformers
model-index:
- name: dgtalbug/stable-code-instruct-3b
  results:
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Python)
    metrics:
    - name: pass@1
      type: pass@1
      value: 32.4
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (C++)
    metrics:
    - name: pass@1
      type: pass@1
      value: 30.9
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Java)
    metrics:
    - name: pass@1
      type: pass@1
      value: 32.1
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (JavaScript)
    metrics:
    - name: pass@1
      type: pass@1
      value: 32.1
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (PHP)
    metrics:
    - name: pass@1
      type: pass@1
      value: 24.2
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Rust)
    metrics:
    - name: pass@1
      type: pass@1
      value: 23.0
---

# **Stable Code Instruct 3B — Base Model**

> This repository stores an **unchanged** copy of `stabilityai/stable-code-instruct-3b`  
> for use as a **base model** in future fine‑tuning projects (including Stephen).

---

## 📌 About the Model

`stable-code-instruct-3b` is a **2.7B parameter decoder-only transformer** from Stability AI, tuned for multi‑language code generation and conversational coding assistance.  
It is suitable as a **starting point** for specialized code assistants,  
including fine‑tuned variants with domain‑specific datasets.

**Key Features:**
- General purpose code generation across multiple programming languages.
- Instruction‑tuned for better conversational performance.
- Strong performance on [MultiPL-E](https://github.com/nuprl/MultiPL-E) benchmarks.

---

## 📊 Performance (MultiPL-E Benchmark)

| Language     | pass@1 |
|--------------|--------|
| Python       | 32.4%  |
| C++          | 30.9%  |
| Java         | 32.1%  |
| JavaScript   | 32.1%  |
| PHP          | 24.2%  |
| Rust         | 23.0%  |

---

## 🚀 Usage

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "dgtalbug/stable-code-instruct-3b"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    model_id, torch_dtype=torch.bfloat16, trust_remote_code=True
).cuda().eval()

messages = [
    {"role": "system", "content": "You are a helpful coding assistant."},
    {"role": "user", "content": "Write a Python function to reverse a string."}
]

prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
inputs = tokenizer([prompt], return_tensors="pt").to(model.device)

tokens = model.generate(
    **inputs,
    max_new_tokens=200,
    temperature=0.5,
    top_p=0.95,
    top_k=100,
    do_sample=True,
    use_cache=True
)

output = tokenizer.batch_decode(tokens[:, inputs.input_ids.shape[-1]:], skip_special_tokens=True)[0]
print(output)
```

---

## 📜 License

This model follows the **[Stability AI Community License](https://huggingface.co/stabilityai/stable-code-instruct-3b/blob/main/LICENSE.md)**.  
For commercial use, refer to [Stability AI licensing terms](https://stability.ai/license).

---

## 📌 Note for Fine‑Tuning

This repository is **not modified** — it is kept as a **clean base model** for derivative works.  
Fine‑tuned versions (e.g., Stephen) will be released in **separate repositories**.