patrickvonplaten commited on
Commit
55197ef
·
2 Parent(s): ea69e6f 7a74fd1
Files changed (1) hide show
  1. README.md +17 -3
README.md CHANGED
@@ -1,16 +1,30 @@
 
 
 
 
 
1
  # Dummy diffusion model following architecture of https://github.com/lucidrains/denoising-diffusion-pytorch
2
 
3
  Run the model as follows:
4
 
5
  ```python
6
- from diffusers import UNetModel
7
  import torch
8
 
9
- model = UNetModel.from_pretrained("fusing/ddpm_dummy")
 
10
 
 
11
  batch_size, num_channels, height, width = 1, 3, 32, 32
12
  dummy_noise = torch.ones((batch_size, num_channels, height, width))
13
  time_step = torch.tensor([10])
 
 
 
 
 
 
 
14
 
15
- image = model(dummy_noise, time_step)
16
  ```
 
1
+ ---
2
+ tags:
3
+ - hf_diffuse
4
+ ---
5
+
6
  # Dummy diffusion model following architecture of https://github.com/lucidrains/denoising-diffusion-pytorch
7
 
8
  Run the model as follows:
9
 
10
  ```python
11
+ from diffusers import UNetModel, GaussianDiffusion
12
  import torch
13
 
14
+ # 1. Load model
15
+ unet = UNetModel.from_pretrained("fusing/ddpm_dummy")
16
 
17
+ # 2. Do one denoising step with model
18
  batch_size, num_channels, height, width = 1, 3, 32, 32
19
  dummy_noise = torch.ones((batch_size, num_channels, height, width))
20
  time_step = torch.tensor([10])
21
+ image = unet(dummy_noise, time_step)
22
+
23
+ # 3. Load sampler
24
+ sampler = GaussianDiffusion.from_config("fusing/ddpm_dummy")
25
+
26
+ # 4. Sample image from sampler passing the model
27
+ image = sampler.sample(model, batch_size=1)
28
 
29
+ print(image)
30
  ```