File size: 19,322 Bytes
4999c45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
import io
import tempfile
import zipfile
from collections import defaultdict
from typing import Tuple, List, Dict, Any

import cv2
import numpy as np
import pycolmap
from PIL import Image as PImage
from scipy.spatial.distance import cdist
from sklearn.cluster import DBSCAN

from hoho2025.color_mappings import ade20k_color_mapping, gestalt_color_mapping


class Config:
    """Configuration for wireframe extraction pipeline."""
    EDGE_THRESHOLD = 15.5
    MERGE_THRESHOLD = 0.65
    PRUNE_DISTANCE = 3.0
    SEARCH_RADIUS = 14
    MIN_EDGE_LENGTH = 0.15
    MAX_EDGE_LENGTH = 27.0
    MORPHOLOGY_KERNEL = 3
    REFINEMENT_CLUSTER_EPS = 0.45
    REFINEMENT_MIN_SAMPLES = 1


def empty_solution() -> Tuple[np.ndarray, List[Tuple[int, int]]]:
    """Returns an empty wireframe solution."""
    return np.zeros((2, 3)), [(0, 1)]


def get_vertices_and_edges_from_segmentation(
    gest_seg_np: np.ndarray, edge_th: float = Config.EDGE_THRESHOLD
) -> Tuple[List[Dict[str, Any]], List[Tuple[int, int]]]:
    """
    Detects roof vertices and edges from a Gestalt segmentation mask.

    Args:
        gest_seg_np: Segmentation mask as a numpy array.
        edge_th: Distance threshold for associating edges to vertices.

    Returns:
        vertices: List of detected vertices with coordinates and type.
        connections: List of edge connections (vertex index pairs).
    """
    vertices, connections = [], []
    if not isinstance(gest_seg_np, np.ndarray):
        gest_seg_np = np.array(gest_seg_np)

    # Vertex detection
    for v_type, color_name in [("apex", "apex"), ("eave_end_point", "eave_end_point")]:
        color = np.array(gestalt_color_mapping[color_name])
        mask = cv2.inRange(gest_seg_np, color - 0.5, color + 0.5)
        if mask.sum() == 0:
            continue

        output = cv2.connectedComponentsWithStats(mask, 8, cv2.CV_32S)
        numLabels, labels, stats, centroids = output
        for i in range(1, numLabels):
            mask_i = (labels == i).astype(np.uint8)
            M = cv2.moments(mask_i)
            if M["m00"] > 0:
                cx, cy = M["m10"] / M["m00"], M["m01"] / M["m00"]
            else:
                ys, xs = np.where(mask_i)
                if len(xs) > 0:
                    cx, cy = np.mean(xs), np.mean(ys)
                else:
                    continue
            vertices.append({"xy": np.array([cx, cy]), "type": v_type})

    if not vertices:
        return [], []

    apex_pts = np.array([v['xy'] for v in vertices])

    # Edge detection
    edge_classes = ['eave', 'ridge', 'rake', 'valley']
    for edge_class in edge_classes:
        if edge_class not in gestalt_color_mapping:
            continue
        edge_color = np.array(gestalt_color_mapping[edge_class])
        mask_raw = cv2.inRange(gest_seg_np, edge_color - 0.5, edge_color + 0.5)

        # Improved morphology: close then open
        kernel = np.ones((Config.MORPHOLOGY_KERNEL, Config.MORPHOLOGY_KERNEL), np.uint8)
        mask = cv2.morphologyEx(mask_raw, cv2.MORPH_CLOSE, kernel)
        mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, np.ones((2, 2), np.uint8))

        if mask.sum() == 0:
            continue

        output = cv2.connectedComponentsWithStats(mask, 8, cv2.CV_32S)
        numLabels, labels, stats, centroids = output
        for lbl in range(1, numLabels):
            ys, xs = np.where(labels == lbl)
            if len(xs) < 2:
                continue
            pts_for_fit = np.column_stack([xs, ys]).astype(np.float32)
            line_params = cv2.fitLine(
                pts_for_fit, distType=cv2.DIST_L2, param=0, reps=0.01, aeps=0.01
            )
            vx, vy, x0, y0 = line_params.ravel()
            proj = ((xs - x0) * vx + (ys - y0) * vy)
            p1 = np.array([x0 + proj.min() * vx, y0 + proj.min() * vy])
            p2 = np.array([x0 + proj.max() * vx, y0 + proj.max() * vy])
            if len(apex_pts) < 2:
                continue
            dists = np.array([point_to_segment_dist(apex_pts[i], p1, p2) for i in range(len(apex_pts))])
            near_indices = np.where(dists <= edge_th)[0]
            if len(near_indices) < 2:
                continue
            for i in range(len(near_indices)):
                for j in range(i + 1, len(near_indices)):
                    conn = tuple(sorted((near_indices[i], near_indices[j])))
                    if conn not in connections:
                        connections.append(conn)
    return vertices, connections


def get_uv_depth(
    vertices: List[Dict[str, Any]],
    depth_fitted: np.ndarray,
    sparse_depth: np.ndarray,
    search_radius: int = Config.SEARCH_RADIUS,
) -> Tuple[np.ndarray, np.ndarray]:
    """
    Assigns depth to each vertex using a weighted search in the sparse depth map.

    Args:
        vertices: List of detected vertices.
        depth_fitted: Dense depth map.
        sparse_depth: Sparse depth map.
        search_radius: Search radius for depth assignment.

    Returns:
        uv: 2D coordinates of vertices.
        vertex_depth: Depth values for each vertex.
    """
    uv = np.array([vert['xy'] for vert in vertices], dtype=np.float32)
    uv_int = np.round(uv).astype(np.int32)
    H, W = depth_fitted.shape[:2]
    uv_int[:, 0] = np.clip(uv_int[:, 0], 0, W - 1)
    uv_int[:, 1] = np.clip(uv_int[:, 1], 0, H - 1)
    vertex_depth = np.zeros(len(vertices), dtype=np.float32)

    for i, (x_i, y_i) in enumerate(uv_int):
        x0, x1 = max(0, x_i - search_radius), min(W, x_i + search_radius + 1)
        y0, y1 = max(0, y_i - search_radius), min(H, y_i + search_radius + 1)
        region = sparse_depth[y0:y1, x0:x1]
        valid_y, valid_x = np.where(region > 0)

        if valid_y.size > 0:
            global_x, global_y = x0 + valid_x, y0 + valid_y
            dist_sq = (global_x - x_i) ** 2 + (global_y - y_i) ** 2
            weights = np.exp(-dist_sq / (2 * (search_radius / 3) ** 2))
            vertex_depth[i] = np.sum(weights * region[valid_y, valid_x]) / np.sum(weights)
        else:
            vertex_depth[i] = depth_fitted[y_i, x_i]

    return uv, vertex_depth


def read_colmap_rec(colmap_data: bytes) -> pycolmap.Reconstruction:
    """Reads a COLMAP reconstruction from a zipped binary."""
    with tempfile.TemporaryDirectory() as tmpdir:
        with zipfile.ZipFile(io.BytesIO(colmap_data), "r") as zf:
            zf.extractall(tmpdir)
        rec = pycolmap.Reconstruction(tmpdir)
        return rec


def convert_entry_to_human_readable(entry: Dict[str, Any]) -> Dict[str, Any]:
    """Converts a raw entry to a human-readable format."""
    out = {}
    for k, v in entry.items():
        if k == 'colmap_binary':
            out[k] = read_colmap_rec(v)
        elif k in ['K', 'R', 't']:
            try:
                out[k] = np.array(v)
            except ValueError:
                out[k] = v
        else:
            out[k] = v
    out['__key__'] = entry.get('order_id', 'unknown_id')
    return out


def get_house_mask(ade20k_seg: np.ndarray) -> np.ndarray:
    """Returns a mask for house/building regions from ADE20K segmentation."""
    house_classes_ade20k = [
        'wall', 'house', 'building;edifice', 'door;double;door', 'windowpane;window'
    ]
    np_seg = np.array(ade20k_seg)
    full_mask = np.zeros(np_seg.shape[:2], dtype=np.uint8)
    for c in house_classes_ade20k:
        if c in ade20k_color_mapping:
            color = np.array(ade20k_color_mapping[c])
            mask = cv2.inRange(np_seg, color - 0.5, color + 0.5)
            full_mask = np.logical_or(full_mask, mask)
    return full_mask


def point_to_segment_dist(pt: np.ndarray, seg_p1: np.ndarray, seg_p2: np.ndarray) -> float:
    """Computes the distance from a point to a line segment."""
    if np.allclose(seg_p1, seg_p2):
        return np.linalg.norm(pt - seg_p1)
    seg_vec = seg_p2 - seg_p1
    pt_vec = pt - seg_p1
    seg_len2 = seg_vec.dot(seg_vec)
    t = max(0, min(1, pt_vec.dot(seg_vec) / seg_len2))
    proj = seg_p1 + t * seg_vec
    return np.linalg.norm(pt - proj)


def get_sparse_depth(
    colmap_rec: pycolmap.Reconstruction, img_id_substring: str, depth: np.ndarray
) -> Tuple[np.ndarray, bool, Any]:
    """Projects COLMAP 3D points into the image to create a sparse depth map."""
    H, W = depth.shape
    found_img = None
    for img_id_c, col_img in colmap_rec.images.items():
        if img_id_substring in col_img.name:
            found_img = col_img
            break
    if found_img is None:
        return np.zeros((H, W), dtype=np.float32), False, None
    points_xyz = [
        p3D.xyz for pid, p3D in colmap_rec.points3D.items() if found_img.has_point3D(pid)
    ]
    if not points_xyz:
        return np.zeros((H, W), dtype=np.float32), False, found_img
    points_xyz = np.array(points_xyz)
    uv, z_vals = [], []
    for xyz in points_xyz:
        proj = found_img.project_point(xyz)
        if proj is not None:
            u_i, v_i = int(round(proj[0])), int(round(proj[1]))
            if 0 <= u_i < W and 0 <= v_i < H:
                uv.append((u_i, v_i))
                mat4x4 = np.eye(4)
                mat4x4[:3, :4] = found_img.cam_from_world.matrix()
                p_cam = mat4x4 @ np.array([xyz[0], xyz[1], xyz[2], 1.0])
                z_vals.append(p_cam[2] / p_cam[3])
    uv, z_vals = np.array(uv, dtype=int), np.array(z_vals)
    depth_out = np.zeros((H, W), dtype=np.float32)
    if len(uv) > 0:
        depth_out[uv[:, 1], uv[:, 0]] = z_vals
    return depth_out, True, found_img


def fit_scale_robust_median(
    depth: np.ndarray, sparse_depth: np.ndarray, validity_mask: np.ndarray = None
) -> Tuple[float, np.ndarray]:
    """Fits a scale factor between dense and sparse depth using the median ratio."""
    mask = (sparse_depth > 0.1) & (depth > 0.1) & (sparse_depth < 50) & (depth < 50)
    if validity_mask is not None:
        mask &= validity_mask
    X, Y = depth[mask], sparse_depth[mask]
    if len(X) < 5:
        return 1.0, depth
    ratios = Y / X
    alpha = np.median(ratios)
    return alpha, alpha * depth


def get_fitted_dense_depth(
    depth: np.ndarray, colmap_rec: pycolmap.Reconstruction, img_id: str, ade20k_seg: np.ndarray
) -> Tuple[np.ndarray, np.ndarray, bool, Any]:
    """Fits the dense depth map to the sparse COLMAP depth."""
    depth_np = np.array(depth) / 1000.0
    depth_sparse, found_sparse, col_img = get_sparse_depth(colmap_rec, img_id, depth_np)
    if not found_sparse:
        return depth_np, np.zeros_like(depth_np), False, None
    house_mask = get_house_mask(ade20k_seg)
    k, depth_fitted = fit_scale_robust_median(depth_np, depth_sparse, validity_mask=house_mask)
    return depth_fitted, depth_sparse, True, col_img


def project_vertices_to_3d(
    uv: np.ndarray, depth_vert: np.ndarray, col_img: Any
) -> np.ndarray:
    """Projects 2D vertices to 3D using camera intrinsics and depth."""
    xy_local = np.ones((len(uv), 3))
    K = col_img.camera.calibration_matrix()
    xy_local[:, 0] = (uv[:, 0] - K[0, 2]) / K[0, 0]
    xy_local[:, 1] = (uv[:, 1] - K[1, 2]) / K[1, 1]
    vertices_3d_local = xy_local * depth_vert[..., None]
    world_to_cam = np.eye(4)
    world_to_cam[:3] = col_img.cam_from_world.matrix()
    cam_to_world = np.linalg.inv(world_to_cam)
    vertices_3d_homogeneous = cv2.convertPointsToHomogeneous(vertices_3d_local)
    vertices_3d = cv2.transform(vertices_3d_homogeneous, cam_to_world)
    return cv2.convertPointsFromHomogeneous(vertices_3d).reshape(-1, 3)


def merge_vertices_3d(
    vert_edge_per_image: Dict[int, Tuple[List[Dict[str, Any]], List[Tuple[int, int]], np.ndarray]],
    th: float = Config.MERGE_THRESHOLD,
) -> Tuple[np.ndarray, List[Tuple[int, int]]]:
    """
    Merges 3D vertices and edges across multiple views.

    Args:
        vert_edge_per_image: Dictionary of per-image vertices, edges, and 3D vertices.
        th: Distance threshold for merging.

    Returns:
        new_vertices: Merged 3D vertices.
        new_connections: Merged edge connections.
    """
    all_3d_vertices, connections_3d, types = [], [], []
    cur_start = 0
    for cimg_idx, (vertices, connections, vertices_3d) in vert_edge_per_image.items():
        if len(vertices) == 0 or len(vertices_3d) == 0:
            continue
        types += [int(v['type'] == 'apex') for v in vertices]
        all_3d_vertices.append(vertices_3d)
        connections_3d += [(x + cur_start, y + cur_start) for (x, y) in connections]
        cur_start += len(vertices_3d)
    if len(all_3d_vertices) == 0:
        return np.array([]), []
    all_3d_vertices = np.concatenate(all_3d_vertices, axis=0)
    if len(all_3d_vertices) == 0:
        return np.array([]), []
    distmat = cdist(all_3d_vertices, all_3d_vertices)
    types = np.array(types).reshape(-1, 1)
    same_types = cdist(types, types)
    mask_to_merge = (distmat <= th) & (same_types == 0)
    new_vertices, new_connections = [], []
    to_merge = sorted(list(set([tuple(a.nonzero()[0].tolist()) for a in mask_to_merge])))
    to_merge_final = defaultdict(list)
    for i in range(len(all_3d_vertices)):
        for j in to_merge:
            if i in j:
                to_merge_final[i] += j
    for k, v in to_merge_final.items():
        to_merge_final[k] = list(set(v))
    already_there, merged = set(), []
    for k, v in to_merge_final.items():
        if k in already_there:
            continue
        merged.append(v)
        for vv in v:
            already_there.add(vv)
    old_idx_to_new = {}
    count = 0
    for idxs in merged:
        if len(idxs) > 0:
            new_vertices.append(all_3d_vertices[idxs].mean(axis=0))
            for idx in idxs:
                old_idx_to_new[idx] = count
            count += 1
    if len(new_vertices) == 0:
        return np.array([]), []
    new_vertices = np.array(new_vertices)
    for conn in connections_3d:
        if conn[0] in old_idx_to_new and conn[1] in old_idx_to_new:
            new_con = sorted((old_idx_to_new[conn[0]], old_idx_to_new[conn[1]]))
            if new_con[0] != new_con[1] and new_con not in new_connections:
                new_connections.append(new_con)
    return new_vertices, new_connections


def prune_too_far(
    all_3d_vertices: np.ndarray, connections_3d: List[Tuple[int, int]], colmap_rec: pycolmap.Reconstruction, th: float = Config.PRUNE_DISTANCE
) -> Tuple[np.ndarray, List[Tuple[int, int]]]:
    """Prunes 3D vertices and edges that are too far from COLMAP points."""
    if len(all_3d_vertices) == 0:
        return all_3d_vertices, connections_3d
    xyz_sfm = np.array([v.xyz for v in colmap_rec.points3D.values()])
    if len(xyz_sfm) == 0:
        return all_3d_vertices, connections_3d
    distmat = cdist(all_3d_vertices, xyz_sfm)
    mask = distmat.min(axis=1) <= th
    if not np.any(mask):
        return np.empty((0, 3)), []
    old_to_new_idx = {old: new for new, old in enumerate(np.where(mask)[0])}
    new_vertices = all_3d_vertices[mask]
    new_connections = []
    for u, v in connections_3d:
        if u in old_to_new_idx and v in old_to_new_idx:
            new_connections.append((old_to_new_idx[u], old_to_new_idx[v]))
    return new_vertices, new_connections


def metric_aware_refine(
    vertices: np.ndarray, edges: List[Tuple[int, int]]
) -> Tuple[np.ndarray, List[Tuple[int, int]]]:
    """
    Refines vertices and edges using clustering and edge length constraints.

    Args:
        vertices: 3D vertex coordinates.
        edges: List of edge connections.

    Returns:
        final_vertices: Refined 3D vertices.
        final_edges: Refined edge connections.
    """
    if len(vertices) < 2:
        return vertices, edges
    clustering = DBSCAN(
        eps=Config.REFINEMENT_CLUSTER_EPS, min_samples=Config.REFINEMENT_MIN_SAMPLES
    ).fit(vertices)
    labels = clustering.labels_
    refined_vertices = vertices.copy()
    refined_centers = {}
    for label in set(labels):
        if label == -1:
            continue
        refined_centers[label] = np.mean(vertices[labels == label], axis=0)
    for i, label in enumerate(labels):
        if label in refined_centers:
            refined_vertices[i] = refined_centers[label]
    final_edges_set = set()
    for u, v in edges:
        if u >= len(refined_vertices) or v >= len(refined_vertices):
            continue
        p1 = refined_vertices[u]
        p2 = refined_vertices[v]
        dist = np.linalg.norm(p1 - p2)
        if Config.MIN_EDGE_LENGTH <= dist <= Config.MAX_EDGE_LENGTH:
            if not np.allclose(p1, p2, atol=1e-3):
                final_edges_set.add(tuple(sorted((u, v))))
    if not final_edges_set:
        return np.empty((0, 3)), []
    used_idxs = set(u for u, v in final_edges_set) | set(v for u, v in final_edges_set)
    sorted_used_idxs = sorted(list(used_idxs))
    final_map = {old_id: new_id for new_id, old_id in enumerate(sorted_used_idxs)}
    final_vertices = np.array([refined_vertices[old_id] for old_id in sorted_used_idxs])
    final_edges = [(final_map[u], final_map[v]) for u, v in final_edges_set]
    return final_vertices, final_edges


def predict_wireframe(entry: Dict[str, Any]) -> Tuple[np.ndarray, List[Tuple[int, int]]]:
    """
    Main prediction function for the S23DR wireframe challenge.

    Args:
        entry: Input data entry.

    Returns:
        final_vertices: 3D vertices of the wireframe.
        final_edges: Edge connections.
    """
    try:
        good_entry = convert_entry_to_human_readable(entry)
        colmap_rec = good_entry['colmap_binary']
        vert_edge_per_image = {}
        for i, (gest_img, img_id, ade_seg, depth_img) in enumerate(
            zip(
                good_entry['gestalt'],
                good_entry['image_ids'],
                good_entry['ade'],
                good_entry['depth'],
            )
        ):
            depth_size = (gest_img.width, gest_img.height)
            gest_seg_np = np.array(gest_img.resize(depth_size)).astype(np.uint8)
            vertices, connections = get_vertices_and_edges_from_segmentation(gest_seg_np)
            if not vertices:
                vert_edge_per_image[i] = ([], [], [])
            else:
                depth_fitted, depth_sparse, found_sparse, col_img = get_fitted_dense_depth(
                    depth_img, colmap_rec, img_id, ade_seg
                )
                if found_sparse and col_img is not None:
                    uv, depth_vert = get_uv_depth(vertices, depth_fitted, depth_sparse)
                    vertices_3d = project_vertices_to_3d(uv, depth_vert, col_img)
                    vert_edge_per_image[i] = (vertices, connections, vertices_3d)
                else:
                    vert_edge_per_image[i] = (vertices, connections, [])
        all_3d_vertices, connections_3d = merge_vertices_3d(vert_edge_per_image)
        all_3d_vertices, connections_3d = prune_too_far(
            all_3d_vertices, connections_3d, colmap_rec
        )
        final_vertices, final_edges = metric_aware_refine(
            all_3d_vertices, connections_3d
        )
        if len(final_vertices) < 2 or len(final_edges) < 1:
            return empty_solution()
        return final_vertices, final_edges
    except Exception as e:
        print(f"An error occurred in the main prediction pipeline: {e}")
        import traceback
        traceback.print_exc()
        return empty_solution()