File size: 19,322 Bytes
4999c45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
import io
import tempfile
import zipfile
from collections import defaultdict
from typing import Tuple, List, Dict, Any
import cv2
import numpy as np
import pycolmap
from PIL import Image as PImage
from scipy.spatial.distance import cdist
from sklearn.cluster import DBSCAN
from hoho2025.color_mappings import ade20k_color_mapping, gestalt_color_mapping
class Config:
"""Configuration for wireframe extraction pipeline."""
EDGE_THRESHOLD = 15.5
MERGE_THRESHOLD = 0.65
PRUNE_DISTANCE = 3.0
SEARCH_RADIUS = 14
MIN_EDGE_LENGTH = 0.15
MAX_EDGE_LENGTH = 27.0
MORPHOLOGY_KERNEL = 3
REFINEMENT_CLUSTER_EPS = 0.45
REFINEMENT_MIN_SAMPLES = 1
def empty_solution() -> Tuple[np.ndarray, List[Tuple[int, int]]]:
"""Returns an empty wireframe solution."""
return np.zeros((2, 3)), [(0, 1)]
def get_vertices_and_edges_from_segmentation(
gest_seg_np: np.ndarray, edge_th: float = Config.EDGE_THRESHOLD
) -> Tuple[List[Dict[str, Any]], List[Tuple[int, int]]]:
"""
Detects roof vertices and edges from a Gestalt segmentation mask.
Args:
gest_seg_np: Segmentation mask as a numpy array.
edge_th: Distance threshold for associating edges to vertices.
Returns:
vertices: List of detected vertices with coordinates and type.
connections: List of edge connections (vertex index pairs).
"""
vertices, connections = [], []
if not isinstance(gest_seg_np, np.ndarray):
gest_seg_np = np.array(gest_seg_np)
# Vertex detection
for v_type, color_name in [("apex", "apex"), ("eave_end_point", "eave_end_point")]:
color = np.array(gestalt_color_mapping[color_name])
mask = cv2.inRange(gest_seg_np, color - 0.5, color + 0.5)
if mask.sum() == 0:
continue
output = cv2.connectedComponentsWithStats(mask, 8, cv2.CV_32S)
numLabels, labels, stats, centroids = output
for i in range(1, numLabels):
mask_i = (labels == i).astype(np.uint8)
M = cv2.moments(mask_i)
if M["m00"] > 0:
cx, cy = M["m10"] / M["m00"], M["m01"] / M["m00"]
else:
ys, xs = np.where(mask_i)
if len(xs) > 0:
cx, cy = np.mean(xs), np.mean(ys)
else:
continue
vertices.append({"xy": np.array([cx, cy]), "type": v_type})
if not vertices:
return [], []
apex_pts = np.array([v['xy'] for v in vertices])
# Edge detection
edge_classes = ['eave', 'ridge', 'rake', 'valley']
for edge_class in edge_classes:
if edge_class not in gestalt_color_mapping:
continue
edge_color = np.array(gestalt_color_mapping[edge_class])
mask_raw = cv2.inRange(gest_seg_np, edge_color - 0.5, edge_color + 0.5)
# Improved morphology: close then open
kernel = np.ones((Config.MORPHOLOGY_KERNEL, Config.MORPHOLOGY_KERNEL), np.uint8)
mask = cv2.morphologyEx(mask_raw, cv2.MORPH_CLOSE, kernel)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, np.ones((2, 2), np.uint8))
if mask.sum() == 0:
continue
output = cv2.connectedComponentsWithStats(mask, 8, cv2.CV_32S)
numLabels, labels, stats, centroids = output
for lbl in range(1, numLabels):
ys, xs = np.where(labels == lbl)
if len(xs) < 2:
continue
pts_for_fit = np.column_stack([xs, ys]).astype(np.float32)
line_params = cv2.fitLine(
pts_for_fit, distType=cv2.DIST_L2, param=0, reps=0.01, aeps=0.01
)
vx, vy, x0, y0 = line_params.ravel()
proj = ((xs - x0) * vx + (ys - y0) * vy)
p1 = np.array([x0 + proj.min() * vx, y0 + proj.min() * vy])
p2 = np.array([x0 + proj.max() * vx, y0 + proj.max() * vy])
if len(apex_pts) < 2:
continue
dists = np.array([point_to_segment_dist(apex_pts[i], p1, p2) for i in range(len(apex_pts))])
near_indices = np.where(dists <= edge_th)[0]
if len(near_indices) < 2:
continue
for i in range(len(near_indices)):
for j in range(i + 1, len(near_indices)):
conn = tuple(sorted((near_indices[i], near_indices[j])))
if conn not in connections:
connections.append(conn)
return vertices, connections
def get_uv_depth(
vertices: List[Dict[str, Any]],
depth_fitted: np.ndarray,
sparse_depth: np.ndarray,
search_radius: int = Config.SEARCH_RADIUS,
) -> Tuple[np.ndarray, np.ndarray]:
"""
Assigns depth to each vertex using a weighted search in the sparse depth map.
Args:
vertices: List of detected vertices.
depth_fitted: Dense depth map.
sparse_depth: Sparse depth map.
search_radius: Search radius for depth assignment.
Returns:
uv: 2D coordinates of vertices.
vertex_depth: Depth values for each vertex.
"""
uv = np.array([vert['xy'] for vert in vertices], dtype=np.float32)
uv_int = np.round(uv).astype(np.int32)
H, W = depth_fitted.shape[:2]
uv_int[:, 0] = np.clip(uv_int[:, 0], 0, W - 1)
uv_int[:, 1] = np.clip(uv_int[:, 1], 0, H - 1)
vertex_depth = np.zeros(len(vertices), dtype=np.float32)
for i, (x_i, y_i) in enumerate(uv_int):
x0, x1 = max(0, x_i - search_radius), min(W, x_i + search_radius + 1)
y0, y1 = max(0, y_i - search_radius), min(H, y_i + search_radius + 1)
region = sparse_depth[y0:y1, x0:x1]
valid_y, valid_x = np.where(region > 0)
if valid_y.size > 0:
global_x, global_y = x0 + valid_x, y0 + valid_y
dist_sq = (global_x - x_i) ** 2 + (global_y - y_i) ** 2
weights = np.exp(-dist_sq / (2 * (search_radius / 3) ** 2))
vertex_depth[i] = np.sum(weights * region[valid_y, valid_x]) / np.sum(weights)
else:
vertex_depth[i] = depth_fitted[y_i, x_i]
return uv, vertex_depth
def read_colmap_rec(colmap_data: bytes) -> pycolmap.Reconstruction:
"""Reads a COLMAP reconstruction from a zipped binary."""
with tempfile.TemporaryDirectory() as tmpdir:
with zipfile.ZipFile(io.BytesIO(colmap_data), "r") as zf:
zf.extractall(tmpdir)
rec = pycolmap.Reconstruction(tmpdir)
return rec
def convert_entry_to_human_readable(entry: Dict[str, Any]) -> Dict[str, Any]:
"""Converts a raw entry to a human-readable format."""
out = {}
for k, v in entry.items():
if k == 'colmap_binary':
out[k] = read_colmap_rec(v)
elif k in ['K', 'R', 't']:
try:
out[k] = np.array(v)
except ValueError:
out[k] = v
else:
out[k] = v
out['__key__'] = entry.get('order_id', 'unknown_id')
return out
def get_house_mask(ade20k_seg: np.ndarray) -> np.ndarray:
"""Returns a mask for house/building regions from ADE20K segmentation."""
house_classes_ade20k = [
'wall', 'house', 'building;edifice', 'door;double;door', 'windowpane;window'
]
np_seg = np.array(ade20k_seg)
full_mask = np.zeros(np_seg.shape[:2], dtype=np.uint8)
for c in house_classes_ade20k:
if c in ade20k_color_mapping:
color = np.array(ade20k_color_mapping[c])
mask = cv2.inRange(np_seg, color - 0.5, color + 0.5)
full_mask = np.logical_or(full_mask, mask)
return full_mask
def point_to_segment_dist(pt: np.ndarray, seg_p1: np.ndarray, seg_p2: np.ndarray) -> float:
"""Computes the distance from a point to a line segment."""
if np.allclose(seg_p1, seg_p2):
return np.linalg.norm(pt - seg_p1)
seg_vec = seg_p2 - seg_p1
pt_vec = pt - seg_p1
seg_len2 = seg_vec.dot(seg_vec)
t = max(0, min(1, pt_vec.dot(seg_vec) / seg_len2))
proj = seg_p1 + t * seg_vec
return np.linalg.norm(pt - proj)
def get_sparse_depth(
colmap_rec: pycolmap.Reconstruction, img_id_substring: str, depth: np.ndarray
) -> Tuple[np.ndarray, bool, Any]:
"""Projects COLMAP 3D points into the image to create a sparse depth map."""
H, W = depth.shape
found_img = None
for img_id_c, col_img in colmap_rec.images.items():
if img_id_substring in col_img.name:
found_img = col_img
break
if found_img is None:
return np.zeros((H, W), dtype=np.float32), False, None
points_xyz = [
p3D.xyz for pid, p3D in colmap_rec.points3D.items() if found_img.has_point3D(pid)
]
if not points_xyz:
return np.zeros((H, W), dtype=np.float32), False, found_img
points_xyz = np.array(points_xyz)
uv, z_vals = [], []
for xyz in points_xyz:
proj = found_img.project_point(xyz)
if proj is not None:
u_i, v_i = int(round(proj[0])), int(round(proj[1]))
if 0 <= u_i < W and 0 <= v_i < H:
uv.append((u_i, v_i))
mat4x4 = np.eye(4)
mat4x4[:3, :4] = found_img.cam_from_world.matrix()
p_cam = mat4x4 @ np.array([xyz[0], xyz[1], xyz[2], 1.0])
z_vals.append(p_cam[2] / p_cam[3])
uv, z_vals = np.array(uv, dtype=int), np.array(z_vals)
depth_out = np.zeros((H, W), dtype=np.float32)
if len(uv) > 0:
depth_out[uv[:, 1], uv[:, 0]] = z_vals
return depth_out, True, found_img
def fit_scale_robust_median(
depth: np.ndarray, sparse_depth: np.ndarray, validity_mask: np.ndarray = None
) -> Tuple[float, np.ndarray]:
"""Fits a scale factor between dense and sparse depth using the median ratio."""
mask = (sparse_depth > 0.1) & (depth > 0.1) & (sparse_depth < 50) & (depth < 50)
if validity_mask is not None:
mask &= validity_mask
X, Y = depth[mask], sparse_depth[mask]
if len(X) < 5:
return 1.0, depth
ratios = Y / X
alpha = np.median(ratios)
return alpha, alpha * depth
def get_fitted_dense_depth(
depth: np.ndarray, colmap_rec: pycolmap.Reconstruction, img_id: str, ade20k_seg: np.ndarray
) -> Tuple[np.ndarray, np.ndarray, bool, Any]:
"""Fits the dense depth map to the sparse COLMAP depth."""
depth_np = np.array(depth) / 1000.0
depth_sparse, found_sparse, col_img = get_sparse_depth(colmap_rec, img_id, depth_np)
if not found_sparse:
return depth_np, np.zeros_like(depth_np), False, None
house_mask = get_house_mask(ade20k_seg)
k, depth_fitted = fit_scale_robust_median(depth_np, depth_sparse, validity_mask=house_mask)
return depth_fitted, depth_sparse, True, col_img
def project_vertices_to_3d(
uv: np.ndarray, depth_vert: np.ndarray, col_img: Any
) -> np.ndarray:
"""Projects 2D vertices to 3D using camera intrinsics and depth."""
xy_local = np.ones((len(uv), 3))
K = col_img.camera.calibration_matrix()
xy_local[:, 0] = (uv[:, 0] - K[0, 2]) / K[0, 0]
xy_local[:, 1] = (uv[:, 1] - K[1, 2]) / K[1, 1]
vertices_3d_local = xy_local * depth_vert[..., None]
world_to_cam = np.eye(4)
world_to_cam[:3] = col_img.cam_from_world.matrix()
cam_to_world = np.linalg.inv(world_to_cam)
vertices_3d_homogeneous = cv2.convertPointsToHomogeneous(vertices_3d_local)
vertices_3d = cv2.transform(vertices_3d_homogeneous, cam_to_world)
return cv2.convertPointsFromHomogeneous(vertices_3d).reshape(-1, 3)
def merge_vertices_3d(
vert_edge_per_image: Dict[int, Tuple[List[Dict[str, Any]], List[Tuple[int, int]], np.ndarray]],
th: float = Config.MERGE_THRESHOLD,
) -> Tuple[np.ndarray, List[Tuple[int, int]]]:
"""
Merges 3D vertices and edges across multiple views.
Args:
vert_edge_per_image: Dictionary of per-image vertices, edges, and 3D vertices.
th: Distance threshold for merging.
Returns:
new_vertices: Merged 3D vertices.
new_connections: Merged edge connections.
"""
all_3d_vertices, connections_3d, types = [], [], []
cur_start = 0
for cimg_idx, (vertices, connections, vertices_3d) in vert_edge_per_image.items():
if len(vertices) == 0 or len(vertices_3d) == 0:
continue
types += [int(v['type'] == 'apex') for v in vertices]
all_3d_vertices.append(vertices_3d)
connections_3d += [(x + cur_start, y + cur_start) for (x, y) in connections]
cur_start += len(vertices_3d)
if len(all_3d_vertices) == 0:
return np.array([]), []
all_3d_vertices = np.concatenate(all_3d_vertices, axis=0)
if len(all_3d_vertices) == 0:
return np.array([]), []
distmat = cdist(all_3d_vertices, all_3d_vertices)
types = np.array(types).reshape(-1, 1)
same_types = cdist(types, types)
mask_to_merge = (distmat <= th) & (same_types == 0)
new_vertices, new_connections = [], []
to_merge = sorted(list(set([tuple(a.nonzero()[0].tolist()) for a in mask_to_merge])))
to_merge_final = defaultdict(list)
for i in range(len(all_3d_vertices)):
for j in to_merge:
if i in j:
to_merge_final[i] += j
for k, v in to_merge_final.items():
to_merge_final[k] = list(set(v))
already_there, merged = set(), []
for k, v in to_merge_final.items():
if k in already_there:
continue
merged.append(v)
for vv in v:
already_there.add(vv)
old_idx_to_new = {}
count = 0
for idxs in merged:
if len(idxs) > 0:
new_vertices.append(all_3d_vertices[idxs].mean(axis=0))
for idx in idxs:
old_idx_to_new[idx] = count
count += 1
if len(new_vertices) == 0:
return np.array([]), []
new_vertices = np.array(new_vertices)
for conn in connections_3d:
if conn[0] in old_idx_to_new and conn[1] in old_idx_to_new:
new_con = sorted((old_idx_to_new[conn[0]], old_idx_to_new[conn[1]]))
if new_con[0] != new_con[1] and new_con not in new_connections:
new_connections.append(new_con)
return new_vertices, new_connections
def prune_too_far(
all_3d_vertices: np.ndarray, connections_3d: List[Tuple[int, int]], colmap_rec: pycolmap.Reconstruction, th: float = Config.PRUNE_DISTANCE
) -> Tuple[np.ndarray, List[Tuple[int, int]]]:
"""Prunes 3D vertices and edges that are too far from COLMAP points."""
if len(all_3d_vertices) == 0:
return all_3d_vertices, connections_3d
xyz_sfm = np.array([v.xyz for v in colmap_rec.points3D.values()])
if len(xyz_sfm) == 0:
return all_3d_vertices, connections_3d
distmat = cdist(all_3d_vertices, xyz_sfm)
mask = distmat.min(axis=1) <= th
if not np.any(mask):
return np.empty((0, 3)), []
old_to_new_idx = {old: new for new, old in enumerate(np.where(mask)[0])}
new_vertices = all_3d_vertices[mask]
new_connections = []
for u, v in connections_3d:
if u in old_to_new_idx and v in old_to_new_idx:
new_connections.append((old_to_new_idx[u], old_to_new_idx[v]))
return new_vertices, new_connections
def metric_aware_refine(
vertices: np.ndarray, edges: List[Tuple[int, int]]
) -> Tuple[np.ndarray, List[Tuple[int, int]]]:
"""
Refines vertices and edges using clustering and edge length constraints.
Args:
vertices: 3D vertex coordinates.
edges: List of edge connections.
Returns:
final_vertices: Refined 3D vertices.
final_edges: Refined edge connections.
"""
if len(vertices) < 2:
return vertices, edges
clustering = DBSCAN(
eps=Config.REFINEMENT_CLUSTER_EPS, min_samples=Config.REFINEMENT_MIN_SAMPLES
).fit(vertices)
labels = clustering.labels_
refined_vertices = vertices.copy()
refined_centers = {}
for label in set(labels):
if label == -1:
continue
refined_centers[label] = np.mean(vertices[labels == label], axis=0)
for i, label in enumerate(labels):
if label in refined_centers:
refined_vertices[i] = refined_centers[label]
final_edges_set = set()
for u, v in edges:
if u >= len(refined_vertices) or v >= len(refined_vertices):
continue
p1 = refined_vertices[u]
p2 = refined_vertices[v]
dist = np.linalg.norm(p1 - p2)
if Config.MIN_EDGE_LENGTH <= dist <= Config.MAX_EDGE_LENGTH:
if not np.allclose(p1, p2, atol=1e-3):
final_edges_set.add(tuple(sorted((u, v))))
if not final_edges_set:
return np.empty((0, 3)), []
used_idxs = set(u for u, v in final_edges_set) | set(v for u, v in final_edges_set)
sorted_used_idxs = sorted(list(used_idxs))
final_map = {old_id: new_id for new_id, old_id in enumerate(sorted_used_idxs)}
final_vertices = np.array([refined_vertices[old_id] for old_id in sorted_used_idxs])
final_edges = [(final_map[u], final_map[v]) for u, v in final_edges_set]
return final_vertices, final_edges
def predict_wireframe(entry: Dict[str, Any]) -> Tuple[np.ndarray, List[Tuple[int, int]]]:
"""
Main prediction function for the S23DR wireframe challenge.
Args:
entry: Input data entry.
Returns:
final_vertices: 3D vertices of the wireframe.
final_edges: Edge connections.
"""
try:
good_entry = convert_entry_to_human_readable(entry)
colmap_rec = good_entry['colmap_binary']
vert_edge_per_image = {}
for i, (gest_img, img_id, ade_seg, depth_img) in enumerate(
zip(
good_entry['gestalt'],
good_entry['image_ids'],
good_entry['ade'],
good_entry['depth'],
)
):
depth_size = (gest_img.width, gest_img.height)
gest_seg_np = np.array(gest_img.resize(depth_size)).astype(np.uint8)
vertices, connections = get_vertices_and_edges_from_segmentation(gest_seg_np)
if not vertices:
vert_edge_per_image[i] = ([], [], [])
else:
depth_fitted, depth_sparse, found_sparse, col_img = get_fitted_dense_depth(
depth_img, colmap_rec, img_id, ade_seg
)
if found_sparse and col_img is not None:
uv, depth_vert = get_uv_depth(vertices, depth_fitted, depth_sparse)
vertices_3d = project_vertices_to_3d(uv, depth_vert, col_img)
vert_edge_per_image[i] = (vertices, connections, vertices_3d)
else:
vert_edge_per_image[i] = (vertices, connections, [])
all_3d_vertices, connections_3d = merge_vertices_3d(vert_edge_per_image)
all_3d_vertices, connections_3d = prune_too_far(
all_3d_vertices, connections_3d, colmap_rec
)
final_vertices, final_edges = metric_aware_refine(
all_3d_vertices, connections_3d
)
if len(final_vertices) < 2 or len(final_edges) < 1:
return empty_solution()
return final_vertices, final_edges
except Exception as e:
print(f"An error occurred in the main prediction pipeline: {e}")
import traceback
traceback.print_exc()
return empty_solution() |