File size: 3,542 Bytes
2d1b4f0 bdfb628 2d1b4f0 bb7f189 2d1b4f0 bb7f189 2d1b4f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
---
license: apache-2.0
library_name: peft
tags:
- text-generation
- alignment-handbook
- generated_from_trainer
- trl
- sft
base_model: mistralai/Mistral-7B-Instruct-v0.2
datasets:
- generator
model-index:
- name: data
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# data
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1832
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.9391 | 0.1479 | 25 | 0.6653 |
| 0.6138 | 0.2959 | 50 | 0.6126 |
| 0.6039 | 0.4438 | 75 | 0.6061 |
| 0.5927 | 0.5917 | 100 | 0.5998 |
| 0.5973 | 0.7396 | 125 | 0.5946 |
| 0.602 | 0.8876 | 150 | 0.5943 |
| 0.547 | 1.0355 | 175 | 0.6319 |
| 0.4239 | 1.1834 | 200 | 0.6169 |
| 0.4301 | 1.3314 | 225 | 0.6158 |
| 0.4176 | 1.4793 | 250 | 0.6193 |
| 0.4295 | 1.6272 | 275 | 0.6242 |
| 0.4252 | 1.7751 | 300 | 0.6265 |
| 0.4252 | 1.9231 | 325 | 0.6264 |
| 0.3591 | 2.0710 | 350 | 0.6893 |
| 0.2758 | 2.2189 | 375 | 0.7153 |
| 0.2702 | 2.3669 | 400 | 0.7170 |
| 0.2797 | 2.5148 | 425 | 0.7173 |
| 0.2727 | 2.6627 | 450 | 0.7144 |
| 0.2817 | 2.8107 | 475 | 0.7169 |
| 0.2798 | 2.9586 | 500 | 0.7016 |
| 0.1922 | 3.1065 | 525 | 0.8090 |
| 0.16 | 3.2544 | 550 | 0.8373 |
| 0.1623 | 3.4024 | 575 | 0.8372 |
| 0.1632 | 3.5503 | 600 | 0.8402 |
| 0.1618 | 3.6982 | 625 | 0.8558 |
| 0.1732 | 3.8462 | 650 | 0.8581 |
| 0.1687 | 3.9941 | 675 | 0.8611 |
| 0.0961 | 4.1420 | 700 | 0.9902 |
| 0.0879 | 4.2899 | 725 | 1.0102 |
| 0.0899 | 4.4379 | 750 | 1.0345 |
| 0.0899 | 4.5858 | 775 | 1.0256 |
| 0.0882 | 4.7337 | 800 | 1.0273 |
| 0.0893 | 4.8817 | 825 | 1.0559 |
| 0.0824 | 5.0296 | 850 | 1.0753 |
| 0.052 | 5.1775 | 875 | 1.1582 |
| 0.052 | 5.3254 | 900 | 1.1643 |
| 0.0526 | 5.4734 | 925 | 1.1923 |
| 0.0497 | 5.6213 | 950 | 1.1759 |
| 0.0496 | 5.7692 | 975 | 1.1812 |
| 0.0477 | 5.9172 | 1000 | 1.1832 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.2.2
- Datasets 2.19.0
- Tokenizers 0.19.1 |