File size: 3,542 Bytes
2d1b4f0
 
 
 
bdfb628
2d1b4f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb7f189
2d1b4f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb7f189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d1b4f0
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
license: apache-2.0
library_name: peft
tags:
- text-generation
- alignment-handbook
- generated_from_trainer
- trl
- sft
base_model: mistralai/Mistral-7B-Instruct-v0.2
datasets:
- generator
model-index:
- name: data
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# data

This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1832

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1
- training_steps: 1000

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.9391        | 0.1479 | 25   | 0.6653          |
| 0.6138        | 0.2959 | 50   | 0.6126          |
| 0.6039        | 0.4438 | 75   | 0.6061          |
| 0.5927        | 0.5917 | 100  | 0.5998          |
| 0.5973        | 0.7396 | 125  | 0.5946          |
| 0.602         | 0.8876 | 150  | 0.5943          |
| 0.547         | 1.0355 | 175  | 0.6319          |
| 0.4239        | 1.1834 | 200  | 0.6169          |
| 0.4301        | 1.3314 | 225  | 0.6158          |
| 0.4176        | 1.4793 | 250  | 0.6193          |
| 0.4295        | 1.6272 | 275  | 0.6242          |
| 0.4252        | 1.7751 | 300  | 0.6265          |
| 0.4252        | 1.9231 | 325  | 0.6264          |
| 0.3591        | 2.0710 | 350  | 0.6893          |
| 0.2758        | 2.2189 | 375  | 0.7153          |
| 0.2702        | 2.3669 | 400  | 0.7170          |
| 0.2797        | 2.5148 | 425  | 0.7173          |
| 0.2727        | 2.6627 | 450  | 0.7144          |
| 0.2817        | 2.8107 | 475  | 0.7169          |
| 0.2798        | 2.9586 | 500  | 0.7016          |
| 0.1922        | 3.1065 | 525  | 0.8090          |
| 0.16          | 3.2544 | 550  | 0.8373          |
| 0.1623        | 3.4024 | 575  | 0.8372          |
| 0.1632        | 3.5503 | 600  | 0.8402          |
| 0.1618        | 3.6982 | 625  | 0.8558          |
| 0.1732        | 3.8462 | 650  | 0.8581          |
| 0.1687        | 3.9941 | 675  | 0.8611          |
| 0.0961        | 4.1420 | 700  | 0.9902          |
| 0.0879        | 4.2899 | 725  | 1.0102          |
| 0.0899        | 4.4379 | 750  | 1.0345          |
| 0.0899        | 4.5858 | 775  | 1.0256          |
| 0.0882        | 4.7337 | 800  | 1.0273          |
| 0.0893        | 4.8817 | 825  | 1.0559          |
| 0.0824        | 5.0296 | 850  | 1.0753          |
| 0.052         | 5.1775 | 875  | 1.1582          |
| 0.052         | 5.3254 | 900  | 1.1643          |
| 0.0526        | 5.4734 | 925  | 1.1923          |
| 0.0497        | 5.6213 | 950  | 1.1759          |
| 0.0496        | 5.7692 | 975  | 1.1812          |
| 0.0477        | 5.9172 | 1000 | 1.1832          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.2.2
- Datasets 2.19.0
- Tokenizers 0.19.1