krish-emissary commited on
Commit
c6c02cd
·
verified ·
1 Parent(s): 58239df

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -4
README.md CHANGED
@@ -29,6 +29,7 @@ This is a finetuned version of Code-Llama-70B specifically optimized for Python
29
  ## Usage
30
 
31
  ### Quick Start
 
32
  ```python
33
  from transformers import AutoModelForCausalLM, AutoTokenizer
34
  import torch
@@ -40,21 +41,25 @@ model = AutoModelForCausalLM.from_pretrained(
40
  torch_dtype=torch.float16,
41
  device_map="auto"
42
  )
 
 
 
43
 
44
- # Example: Complete Python code
45
  prompt = "def calculate_average(numbers):\n "
46
  inputs = tokenizer(prompt, return_tensors="pt")
47
  outputs = model.generate(**inputs, max_length=100, temperature=0.7)
48
  completion = tokenizer.decode(outputs[0], skip_special_tokens=True)
49
  print(completion)
 
50
 
51
- # Limitations
52
 
53
  - Optimized specifically for Python; performance on other languages may vary
54
  - Best suited for short to medium-length completions
55
  - May require significant computational resources due to model size (70B parameters)
56
 
57
- # Ethical Considerations
58
 
59
  - Should not be used as the sole tool for production code without human review
60
  - May reflect biases present in the training data
@@ -67,7 +72,7 @@ This model is subject to the Meta Llama 2 Community License Agreement. By using
67
  # Citation
68
 
69
  If you use this model in your research or applications, please cite:
70
- ```
71
  @misc{python-tab-completion-codellama-70b,
72
  author = {Emissary AI},
73
  title = {Python Tab Completion CodeLlama 70B},
 
29
  ## Usage
30
 
31
  ### Quick Start
32
+
33
  ```python
34
  from transformers import AutoModelForCausalLM, AutoTokenizer
35
  import torch
 
41
  torch_dtype=torch.float16,
42
  device_map="auto"
43
  )
44
+ ```
45
+
46
+ ### Example: Complete Python code
47
 
48
+ ```python
49
  prompt = "def calculate_average(numbers):\n "
50
  inputs = tokenizer(prompt, return_tensors="pt")
51
  outputs = model.generate(**inputs, max_length=100, temperature=0.7)
52
  completion = tokenizer.decode(outputs[0], skip_special_tokens=True)
53
  print(completion)
54
+ ```
55
 
56
+ ### Limitations
57
 
58
  - Optimized specifically for Python; performance on other languages may vary
59
  - Best suited for short to medium-length completions
60
  - May require significant computational resources due to model size (70B parameters)
61
 
62
+ ### Ethical Considerations
63
 
64
  - Should not be used as the sole tool for production code without human review
65
  - May reflect biases present in the training data
 
72
  # Citation
73
 
74
  If you use this model in your research or applications, please cite:
75
+ ```bibtex
76
  @misc{python-tab-completion-codellama-70b,
77
  author = {Emissary AI},
78
  title = {Python Tab Completion CodeLlama 70B},