Unconditional Image Generation
English
encoreus commited on
Commit
62a7daa
·
verified ·
1 Parent(s): 6c2e6e4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -1
README.md CHANGED
@@ -6,4 +6,32 @@ datasets:
6
  - bitmind/AFHQ
7
  - ILSVRC/imagenet-1k
8
  pipeline_tag: unconditional-image-generation
9
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  - bitmind/AFHQ
7
  - ILSVRC/imagenet-1k
8
  pipeline_tag: unconditional-image-generation
9
+ ---
10
+ ---
11
+ license: apache-2.0
12
+ language:
13
+ - en
14
+ datasets:
15
+ - bitmind/AFHQ
16
+ - ILSVRC/imagenet-1k
17
+ pipeline_tag: unconditional-image-generation
18
+ ---
19
+
20
+ # Transformer AutoRegressive Flow Model
21
+ The TarFlow is proposed by [Zhai et al., 2024], which introduces stacks of autoregressive Transformer blocks (similar to MAF) into the building of affine coupling layers to do Non-Volume Preserving, combined with guidance and denoising }, finally achieves state-of-the-art results across multiple benchmarks.
22
+
23
+ Let $z$ denotes the noise direction and $x$ denotes the image direction, both with size $(B,T,C)$, where B,T,C represent batch size, patchified sequence length, and feature dimension, respectively. For TarFlow model, an autoregressive block can be written as:
24
+
25
+ \begin{equation}
26
+ \begin{aligned}
27
+ \text{Forward:\quad}z_t &= \exp(-s(x_{<t}))(x_t-u(x_{<t})),\\
28
+ \text{Inverse:\quad}x_t &= \exp(s(x_{<t})) z_t +u(x_{<t}).
29
+ \end{aligned}
30
+ \end{equation}
31
+
32
+
33
+ It's sampling process is extremely slow, and we want to accelerate it in []. In experiments, we found that the
34
+
35
+
36
+
37
+ [1] Zhai S, Zhang R, Nakkiran P, et al. Normalizing flows are capable generative models[J]. arXiv preprint arXiv:2412.06329, 2024.