File size: 2,668 Bytes
e7db354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: stt
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# stt

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4300
- Wer Ortho: 21.3276
- Wer: 14.7093

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 8000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer Ortho | Wer     |
|:-------------:|:------:|:----:|:---------------:|:---------:|:-------:|
| 0.4135        | 0.6180 | 500  | 0.4069          | 29.9115   | 21.6319 |
| 0.2036        | 1.2361 | 1000 | 0.3584          | 25.8738   | 18.3552 |
| 0.1899        | 1.8541 | 1500 | 0.3390          | 24.0940   | 16.4814 |
| 0.0978        | 2.4722 | 2000 | 0.3406          | 24.1957   | 16.8982 |
| 0.0584        | 3.0902 | 2500 | 0.3589          | 22.7718   | 15.9189 |
| 0.0457        | 3.7083 | 3000 | 0.3660          | 23.3075   | 15.8580 |
| 0.0203        | 4.3263 | 3500 | 0.3762          | 22.9108   | 15.7394 |
| 0.0193        | 4.9444 | 4000 | 0.3683          | 22.0192   | 15.2616 |
| 0.0073        | 5.5624 | 4500 | 0.3926          | 22.5447   | 15.5801 |
| 0.0022        | 6.1805 | 5000 | 0.4065          | 21.5649   | 14.9092 |
| 0.0022        | 6.7985 | 5500 | 0.4080          | 21.2835   | 14.6313 |
| 0.0009        | 7.4166 | 6000 | 0.4180          | 21.2564   | 14.6415 |
| 0.0007        | 8.0346 | 6500 | 0.4244          | 21.2361   | 14.6551 |
| 0.0006        | 8.6527 | 7000 | 0.4283          | 21.3276   | 14.6957 |
| 0.0006        | 9.2707 | 7500 | 0.4297          | 21.3378   | 14.7059 |
| 0.0006        | 9.8888 | 8000 | 0.4300          | 21.3276   | 14.7093 |


### Framework versions

- Transformers 4.51.3
- Pytorch 2.5.1+cu121
- Datasets 3.6.0
- Tokenizers 0.21.1