ericzhang0328 commited on
Commit
7ec3f06
·
verified ·
1 Parent(s): 1a4b4dc

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
__pycache__/configuration_llama.cpython-311.pyc ADDED
Binary file (10.4 kB). View file
 
__pycache__/modeling_llama.cpython-311.pyc ADDED
Binary file (89.3 kB). View file
 
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LoopLlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 128000,
8
+ "eos_token_id": 128001,
9
+ "head_dim": 64,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 2048,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 8192,
14
+ "loop_times": 3,
15
+ "max_position_embeddings": 131072,
16
+ "mlp_bias": false,
17
+ "model_type": "llama",
18
+ "num_attention_heads": 32,
19
+ "num_hidden_layers": 16,
20
+ "num_key_value_heads": 8,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": {
24
+ "factor": 32.0,
25
+ "high_freq_factor": 4.0,
26
+ "low_freq_factor": 1.0,
27
+ "original_max_position_embeddings": 8192,
28
+ "rope_type": "llama3"
29
+ },
30
+ "rope_theta": 500000.0,
31
+ "tie_word_embeddings": true,
32
+ "torch_dtype": "float32",
33
+ "transformers_version": "4.55.0",
34
+ "use_cache": true,
35
+ "vocab_size": 128256
36
+ }
configuration_llama.py ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """LLaMA model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.modeling_rope_utils import rope_config_validation
24
+
25
+
26
+ class LlamaConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
29
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
30
+ defaults will yield a similar configuration to that of the LLaMA-7B.
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 32000):
38
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`LlamaModel`]
40
+ hidden_size (`int`, *optional*, defaults to 4096):
41
+ Dimension of the hidden representations.
42
+ intermediate_size (`int`, *optional*, defaults to 11008):
43
+ Dimension of the MLP representations.
44
+ num_hidden_layers (`int`, *optional*, defaults to 32):
45
+ Number of hidden layers in the Transformer decoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 32):
47
+ Number of attention heads for each attention layer in the Transformer decoder.
48
+ num_key_value_heads (`int`, *optional*):
49
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
50
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
51
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
52
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
53
+ by meanpooling all the original heads within that group. For more details checkout [this
54
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
55
+ `num_attention_heads`.
56
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
57
+ The non-linear activation function (function or string) in the decoder.
58
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
59
+ The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
60
+ Llama 2 up to 4096, CodeLlama up to 16384.
61
+ initializer_range (`float`, *optional*, defaults to 0.02):
62
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
63
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
64
+ The epsilon used by the rms normalization layers.
65
+ use_cache (`bool`, *optional*, defaults to `True`):
66
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
67
+ relevant if `config.is_decoder=True`.
68
+ pad_token_id (`int`, *optional*):
69
+ Padding token id.
70
+ bos_token_id (`int`, *optional*, defaults to 1):
71
+ Beginning of stream token id.
72
+ eos_token_id (`int`, *optional*, defaults to 2):
73
+ End of stream token id.
74
+ pretraining_tp (`int`, *optional*, defaults to 1):
75
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
76
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
77
+ understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
78
+ results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
79
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
80
+ Whether to tie weight embeddings
81
+ rope_theta (`float`, *optional*, defaults to 10000.0):
82
+ The base period of the RoPE embeddings.
83
+ rope_scaling (`Dict`, *optional*):
84
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
85
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
86
+ accordingly.
87
+ Expected contents:
88
+ `rope_type` (`str`):
89
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
90
+ 'llama3'], with 'default' being the original RoPE implementation.
91
+ `factor` (`float`, *optional*):
92
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
93
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
94
+ original maximum pre-trained length.
95
+ `original_max_position_embeddings` (`int`, *optional*):
96
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
97
+ pretraining.
98
+ `attention_factor` (`float`, *optional*):
99
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
100
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
101
+ `factor` field to infer the suggested value.
102
+ `beta_fast` (`float`, *optional*):
103
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
104
+ ramp function. If unspecified, it defaults to 32.
105
+ `beta_slow` (`float`, *optional*):
106
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
107
+ ramp function. If unspecified, it defaults to 1.
108
+ `short_factor` (`List[float]`, *optional*):
109
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
110
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
111
+ size divided by the number of attention heads divided by 2
112
+ `long_factor` (`List[float]`, *optional*):
113
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
114
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
115
+ size divided by the number of attention heads divided by 2
116
+ `low_freq_factor` (`float`, *optional*):
117
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
118
+ `high_freq_factor` (`float`, *optional*):
119
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
120
+ attention_bias (`bool`, *optional*, defaults to `False`):
121
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
122
+ attention_dropout (`float`, *optional*, defaults to 0.0):
123
+ The dropout ratio for the attention probabilities.
124
+ mlp_bias (`bool`, *optional*, defaults to `False`):
125
+ Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
126
+ head_dim (`int`, *optional*):
127
+ The attention head dimension. If None, it will default to hidden_size // num_heads
128
+
129
+ ```python
130
+ >>> from transformers import LlamaModel, LlamaConfig
131
+
132
+ >>> # Initializing a LLaMA llama-7b style configuration
133
+ >>> configuration = LlamaConfig()
134
+
135
+ >>> # Initializing a model from the llama-7b style configuration
136
+ >>> model = LlamaModel(configuration)
137
+
138
+ >>> # Accessing the model configuration
139
+ >>> configuration = model.config
140
+ ```"""
141
+
142
+ model_type = "llama"
143
+ keys_to_ignore_at_inference = ["past_key_values"]
144
+
145
+ def __init__(
146
+ self,
147
+ vocab_size=32000,
148
+ hidden_size=4096,
149
+ intermediate_size=11008,
150
+ num_hidden_layers=32,
151
+ num_attention_heads=32,
152
+ num_key_value_heads=None,
153
+ hidden_act="silu",
154
+ max_position_embeddings=2048,
155
+ initializer_range=0.02,
156
+ rms_norm_eps=1e-6,
157
+ use_cache=True,
158
+ pad_token_id=None,
159
+ bos_token_id=1,
160
+ eos_token_id=2,
161
+ pretraining_tp=1,
162
+ tie_word_embeddings=False,
163
+ rope_theta=10000.0,
164
+ rope_scaling=None,
165
+ attention_bias=False,
166
+ attention_dropout=0.0,
167
+ mlp_bias=False,
168
+ head_dim=None,
169
+ **kwargs,
170
+ ):
171
+ self.vocab_size = vocab_size
172
+ self.max_position_embeddings = max_position_embeddings
173
+ self.hidden_size = hidden_size
174
+ self.intermediate_size = intermediate_size
175
+ self.num_hidden_layers = num_hidden_layers
176
+ self.num_attention_heads = num_attention_heads
177
+
178
+ # for backward compatibility
179
+ if num_key_value_heads is None:
180
+ num_key_value_heads = num_attention_heads
181
+
182
+ self.num_key_value_heads = num_key_value_heads
183
+ self.hidden_act = hidden_act
184
+ self.initializer_range = initializer_range
185
+ self.rms_norm_eps = rms_norm_eps
186
+ self.pretraining_tp = pretraining_tp
187
+ self.use_cache = use_cache
188
+ self.rope_theta = rope_theta
189
+ self.rope_scaling = rope_scaling
190
+ self.attention_bias = attention_bias
191
+ self.attention_dropout = attention_dropout
192
+ self.mlp_bias = mlp_bias
193
+ self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
194
+ # Validate the correctness of rotary position embeddings parameters
195
+ # BC: if there is a 'type' field, copy it it to 'rope_type'.
196
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
197
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
198
+ rope_config_validation(self)
199
+
200
+ super().__init__(
201
+ pad_token_id=pad_token_id,
202
+ bos_token_id=bos_token_id,
203
+ eos_token_id=eos_token_id,
204
+ tie_word_embeddings=tie_word_embeddings,
205
+ **kwargs,
206
+ )
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "eos_token_id": 128001,
5
+ "transformers_version": "4.55.0"
6
+ }
load_model.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import HfApi
2
+
3
+ api = HfApi()
4
+ api.create_repo(repo_id="ericzhang0328/loopllama-1B", repo_type="model")
5
+
6
+ from huggingface_hub import HfApi
7
+
8
+ api = HfApi()
9
+ api.upload_folder(
10
+ folder_path="/projects/llama-cpt/models/loopllama", # 本地文件夹
11
+ repo_id="ericzhang0328/loopllama-1B", # Hub 上的仓库
12
+ repo_type="model" # 仓库类型,通常是 "model"
13
+ )
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa5a3d00b163b05454ce95dba5dd9db0ef663d04057f31e6a50be8fc05704929
3
+ size 4943274328
modeling_llama.py ADDED
@@ -0,0 +1,1936 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ import math
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
31
+ from transformers.generation import GenerationMixin
32
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
33
+ from transformers.modeling_flash_attention_utils import _flash_attention_forward
34
+ from transformers.modeling_outputs import (
35
+ BaseModelOutputWithPast,
36
+ CausalLMOutputWithPast,
37
+ QuestionAnsweringModelOutput,
38
+ SequenceClassifierOutputWithPast,
39
+ TokenClassifierOutput,
40
+ )
41
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
42
+ from transformers.modeling_utils import PreTrainedModel
43
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
44
+ from transformers.utils import (
45
+ add_start_docstrings,
46
+ add_start_docstrings_to_model_forward,
47
+ is_flash_attn_greater_or_equal_2_10,
48
+ is_torchdynamo_compiling,
49
+ logging,
50
+ replace_return_docstrings,
51
+ )
52
+ from .configuration_llama import LlamaConfig
53
+
54
+
55
+ logger = logging.get_logger(__name__)
56
+ _CONFIG_FOR_DOC = "LlamaConfig"
57
+
58
+ def _prepare_4d_causal_attention_mask_with_cache_position(
59
+ attention_mask: torch.Tensor,
60
+ sequence_length: int,
61
+ target_length: int,
62
+ dtype: torch.dtype,
63
+ device: torch.device,
64
+ min_dtype: float,
65
+ cache_position: torch.Tensor,
66
+ batch_size: int,
67
+ ):
68
+ """
69
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
70
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
71
+
72
+ Args:
73
+ attention_mask (`torch.Tensor`):
74
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
75
+ sequence_length (`int`):
76
+ The sequence length being processed.
77
+ target_length (`int`):
78
+ The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
79
+ dtype (`torch.dtype`):
80
+ The dtype to use for the 4D attention mask.
81
+ device (`torch.device`):
82
+ The device to plcae the 4D attention mask on.
83
+ min_dtype (`float`):
84
+ The minimum value representable with the dtype `dtype`.
85
+ cache_position (`torch.Tensor`):
86
+ Indices depicting the position of the input sequence tokens in the sequence.
87
+ batch_size (`torch.Tensor`):
88
+ Batch size.
89
+ """
90
+ if attention_mask is not None and attention_mask.dim() == 4:
91
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
92
+ causal_mask = attention_mask
93
+ else:
94
+ causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
95
+ if sequence_length != 1:
96
+ causal_mask = torch.triu(causal_mask, diagonal=1)
97
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
98
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
99
+ if attention_mask is not None:
100
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
101
+ mask_length = attention_mask.shape[-1]
102
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
103
+ padding_mask = padding_mask == 0
104
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
105
+ padding_mask, min_dtype
106
+ )
107
+
108
+ return causal_mask
109
+
110
+ class LoopMergingStaticCache(StaticCache):
111
+ def __init__(self, *args, default_alpha: float = 0.5, duplicate_policy: str = "mean", **kwargs):
112
+ # ---- 兼容不同版本的参数名 ----
113
+ if "batch_size" in kwargs and "max_batch_size" not in kwargs:
114
+ kwargs["max_batch_size"] = kwargs.pop("batch_size")
115
+ if "max_sequence_length" in kwargs and "max_cache_len" not in kwargs:
116
+ kwargs["max_cache_len"] = kwargs.pop("max_sequence_length")
117
+ if "seq_len" in kwargs and "max_cache_len" not in kwargs:
118
+ kwargs["max_cache_len"] = kwargs.pop("seq_len")
119
+
120
+ super().__init__(*args, **kwargs)
121
+
122
+ # ---- 强制兜底,防止 0 值 ----
123
+ if not hasattr(self, "max_batch_size"):
124
+ # 某些版本名为 'batch_size',做个兜底
125
+ self.max_batch_size = getattr(self, "batch_size", None) or kwargs.get("max_batch_size")
126
+ if not hasattr(self, "max_cache_len"):
127
+ # 极端情况下父类没设置上,我们强制设置
128
+ self.max_cache_len = kwargs.get("max_cache_len")
129
+
130
+ assert isinstance(self.max_cache_len, int) and self.max_cache_len > 0, \
131
+ f"max_cache_len invalid: {self.max_cache_len}"
132
+ assert isinstance(self.max_batch_size, int) and self.max_batch_size > 0, \
133
+ f"max_batch_size invalid: {self.max_batch_size}"
134
+
135
+ self.default_alpha = float(default_alpha)
136
+ self.duplicate_policy = duplicate_policy
137
+
138
+ Bmax = self.max_batch_size
139
+ T = self.max_cache_len
140
+ dev = self.key_cache[0].device
141
+ self._written_mask = [
142
+ torch.zeros(Bmax, T, dtype=torch.bool, device=dev)
143
+ for _ in range(len(self.key_cache))
144
+ ]
145
+
146
+ # 兼容旧调用
147
+ def get_max_length(self):
148
+ return self.max_cache_len
149
+
150
+
151
+ @torch.no_grad()
152
+ def update(self, key_states, value_states, layer_idx, cache_kwargs=None):
153
+ cache_kwargs = cache_kwargs or {}
154
+ cache_position = cache_kwargs.get("cache_position", None)
155
+ if cache_position is None:
156
+ return super().update(key_states, value_states, layer_idx, cache_kwargs)
157
+
158
+ merge = bool(cache_kwargs.get("merge", True))
159
+ alpha = float(cache_kwargs.get("alpha", self.default_alpha))
160
+
161
+ import pdb; pdb.set_trace()
162
+ # 取出该层的 KV 存储(静态预分配的 [B, H_kv, T_max, D])
163
+ k_out = self.key_cache[layer_idx]
164
+ v_out = self.value_cache[layer_idx]
165
+
166
+ # 规范形状
167
+ # key_states/value_states: [B, H_kv, S_step, D]
168
+ # cache_position: [S_step]
169
+ B, H, S, D = key_states.shape
170
+ device = k_out.device
171
+
172
+ # dtype 对齐(避免半精度融合溢出可按需临时 upcast)
173
+ # 这里默认在 k_out.dtype 上融合(通常 fp16/bf16)
174
+ key_states = key_states.to(k_out.dtype)
175
+ value_states = value_states.to(v_out.dtype)
176
+ pos = cache_position.to(device) # [S]
177
+
178
+ # ---- 1) 单步内去重/聚合到唯一位置 ----
179
+ # uniq_pos: [Su], inverse: [S] 映射 S->Su
180
+ uniq_pos, inverse, counts = torch.unique(pos, sorted=True, return_inverse=True, return_counts=True)
181
+ Su = uniq_pos.shape[0]
182
+ inv_bhd = inverse.view(1,1,S,1).expand(B,H,S,1)
183
+ inv_full = inv_bhd.expand(B,H,S,D)
184
+
185
+ if Su == S:
186
+ # 无重复,直接用原 src
187
+ src_k = key_states
188
+ src_v = value_states
189
+ else:
190
+ # 聚合到 [B,H,Su,D]
191
+ src_k = torch.zeros(B,H,Su,D, dtype=key_states.dtype, device=device)
192
+ src_v = torch.zeros(B,H,Su,D, dtype=value_states.dtype, device=device)
193
+
194
+ if self.duplicate_policy == "mean":
195
+ src_k.scatter_reduce_(2, inv_full, key_states, reduce="mean", include_self=False)
196
+ src_v.scatter_reduce_(2, inv_full, value_states, reduce="mean", include_self=False)
197
+ elif self.duplicate_policy == "sum":
198
+ src_k.scatter_reduce_(2, inv_full, key_states, reduce="sum", include_self=False)
199
+ src_v.scatter_reduce_(2, inv_full, value_states, reduce="sum", include_self=False)
200
+ elif self.duplicate_policy == "last":
201
+ # “最后一次”策略:构造每个 uniq 的最后位置索引
202
+ idx_range = torch.arange(S, device=device)
203
+ last_idx = torch.zeros(Su, dtype=torch.long, device=device)
204
+ last_idx.scatter_(0, inverse, idx_range) # 最后出现者覆盖
205
+ # 收集最后一次对应的切片
206
+ last_bhd = last_idx.view(1,1,Su,1).expand(B,H,Su,1)
207
+ last_full = last_bhd.expand(B,H,Su,D)
208
+ src_k = torch.gather(key_states, 2, last_full)
209
+ src_v = torch.gather(value_states, 2, last_full)
210
+ else:
211
+ raise ValueError(f"unknown duplicate_policy={self.duplicate_policy}")
212
+
213
+ pos = uniq_pos # 用唯一位置
214
+ S = Su
215
+
216
+ # ---- 2) 首写与再写分流(冷启动安全)----
217
+ written_full = self._written_mask[layer_idx] # [Bmax, T]
218
+ written = written_full[:B] # [B, T]
219
+
220
+ # fresh_mask: [B, S]
221
+ fresh_mask = (~written[:, pos])
222
+
223
+ pos_bhd = pos.view(1,1,S,1).expand(B,H,S,1)
224
+ idx_full = pos_bhd.expand(B,H,S,D)
225
+
226
+ old_k = torch.gather(k_out, 2, idx_full)
227
+ old_v = torch.gather(v_out, 2, idx_full)
228
+
229
+ if merge:
230
+ # 广播 fresh_mask -> [B,1,S,1]
231
+ fm = fresh_mask.view(B,1,S,1)
232
+
233
+ # 再写(已有值)用 EMA,首写直接覆盖
234
+ ema_k = (1.0 - alpha) * old_k + alpha * src_k
235
+ ema_v = (1.0 - alpha) * old_v + alpha * src_v
236
+ new_k = torch.where(fm, src_k, ema_k)
237
+ new_v = torch.where(fm, src_v, ema_v)
238
+ else:
239
+ new_k, new_v = src_k, src_v
240
+
241
+ # ---- 3) 写回 + 更新 written_mask ----
242
+ k_out.scatter_(2, idx_full, new_k)
243
+ v_out.scatter_(2, idx_full, new_v)
244
+ # 更新“已写过”标记
245
+ written[:, pos] = True
246
+
247
+ # 返回全长(StaticCache 契约)
248
+ return k_out, v_out
249
+
250
+
251
+ class LlamaRMSNorm(nn.Module):
252
+ def __init__(self, hidden_size, eps=1e-6):
253
+ """
254
+ LlamaRMSNorm is equivalent to T5LayerNorm
255
+ """
256
+ super().__init__()
257
+ self.weight = nn.Parameter(torch.ones(hidden_size))
258
+ self.variance_epsilon = eps
259
+
260
+ def forward(self, hidden_states):
261
+ input_dtype = hidden_states.dtype
262
+ hidden_states = hidden_states.to(torch.float32)
263
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
264
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
265
+ return self.weight * hidden_states.to(input_dtype)
266
+
267
+ def extra_repr(self):
268
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
269
+
270
+ ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
271
+
272
+ class LlamaRotaryEmbedding(nn.Module):
273
+ def __init__(
274
+ self,
275
+ dim=None,
276
+ max_position_embeddings=2048,
277
+ base=10000,
278
+ device=None,
279
+ scaling_factor=1.0,
280
+ rope_type="default",
281
+ config: Optional[LlamaConfig] = None,
282
+ ):
283
+ super().__init__()
284
+ # TODO (joao): remove the `if` below, only used for BC
285
+ self.rope_kwargs = {}
286
+ if config is None:
287
+ logger.warning_once(
288
+ "`LlamaRotaryEmbedding` can now be fully parameterized by passing the model config through the "
289
+ "`config` argument. All other arguments will be removed in v4.46"
290
+ )
291
+ self.rope_kwargs = {
292
+ "rope_type": rope_type,
293
+ "factor": scaling_factor,
294
+ "dim": dim,
295
+ "base": base,
296
+ "max_position_embeddings": max_position_embeddings,
297
+ }
298
+ self.rope_type = rope_type
299
+ self.max_seq_len_cached = max_position_embeddings
300
+ self.original_max_seq_len = max_position_embeddings
301
+ else:
302
+ # BC: "rope_type" was originally "type"
303
+ if config.rope_scaling is not None:
304
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
305
+ else:
306
+ self.rope_type = "default"
307
+ self.max_seq_len_cached = config.max_position_embeddings
308
+ self.original_max_seq_len = config.max_position_embeddings
309
+
310
+ self.config = config
311
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
312
+
313
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
314
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
315
+ self.original_inv_freq = self.inv_freq
316
+
317
+ def _dynamic_frequency_update(self, position_ids, device):
318
+ """
319
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
320
+ 1 - growing beyond the cached sequence length (allow scaling)
321
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
322
+ """
323
+ seq_len = torch.max(position_ids) + 1
324
+ if seq_len > self.max_seq_len_cached: # growth
325
+ inv_freq, self.attention_scaling = self.rope_init_fn(
326
+ self.config, device, seq_len=seq_len, **self.rope_kwargs
327
+ )
328
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
329
+ self.max_seq_len_cached = seq_len
330
+
331
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
332
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
333
+ self.max_seq_len_cached = self.original_max_seq_len
334
+
335
+ @torch.no_grad()
336
+ def forward(self, x, position_ids):
337
+ if "dynamic" in self.rope_type:
338
+ self._dynamic_frequency_update(position_ids, device=x.device)
339
+
340
+ # Core RoPE block
341
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
342
+ position_ids_expanded = position_ids[:, None, :].float()
343
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
344
+ device_type = x.device.type
345
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
346
+ with torch.autocast(device_type=device_type, enabled=False):
347
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
348
+ emb = torch.cat((freqs, freqs), dim=-1)
349
+ cos = emb.cos()
350
+ sin = emb.sin()
351
+
352
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
353
+ cos = cos * self.attention_scaling
354
+ sin = sin * self.attention_scaling
355
+
356
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
357
+
358
+
359
+ class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
360
+ """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
361
+
362
+ def __init__(self, *args, **kwargs):
363
+ logger.warning_once(
364
+ "`LlamaLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
365
+ "`LlamaRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)."
366
+ )
367
+ kwargs["rope_type"] = "linear"
368
+ super().__init__(*args, **kwargs)
369
+
370
+
371
+ class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
372
+ """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
373
+
374
+ def __init__(self, *args, **kwargs):
375
+ logger.warning_once(
376
+ "`LlamaDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
377
+ "`LlamaRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to "
378
+ "__init__)."
379
+ )
380
+ kwargs["rope_type"] = "dynamic"
381
+ super().__init__(*args, **kwargs)
382
+
383
+
384
+ def rotate_half(x):
385
+ """Rotates half the hidden dims of the input."""
386
+ x1 = x[..., : x.shape[-1] // 2]
387
+ x2 = x[..., x.shape[-1] // 2 :]
388
+ return torch.cat((-x2, x1), dim=-1)
389
+
390
+
391
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
392
+ """Applies Rotary Position Embedding to the query and key tensors.
393
+
394
+ Args:
395
+ q (`torch.Tensor`): The query tensor.
396
+ k (`torch.Tensor`): The key tensor.
397
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
398
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
399
+ position_ids (`torch.Tensor`, *optional*):
400
+ Deprecated and unused.
401
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
402
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
403
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
404
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
405
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
406
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
407
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
408
+ Returns:
409
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
410
+ """
411
+ cos = cos.unsqueeze(unsqueeze_dim)
412
+ sin = sin.unsqueeze(unsqueeze_dim)
413
+ q_embed = (q * cos) + (rotate_half(q) * sin)
414
+ k_embed = (k * cos) + (rotate_half(k) * sin)
415
+ return q_embed, k_embed
416
+
417
+
418
+ class LlamaMLP(nn.Module):
419
+ def __init__(self, config):
420
+ super().__init__()
421
+ self.config = config
422
+ self.hidden_size = config.hidden_size
423
+ self.intermediate_size = config.intermediate_size
424
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
425
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
426
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
427
+ self.act_fn = ACT2FN[config.hidden_act]
428
+
429
+ def forward(self, x):
430
+ if self.config.pretraining_tp > 1:
431
+ slice = self.intermediate_size // self.config.pretraining_tp
432
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
433
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
434
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
435
+
436
+ gate_proj = torch.cat(
437
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
438
+ )
439
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
440
+
441
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
442
+ down_proj = [
443
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
444
+ ]
445
+ down_proj = sum(down_proj)
446
+ else:
447
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
448
+
449
+ return down_proj
450
+
451
+
452
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
453
+ """
454
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
455
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
456
+ """
457
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
458
+ if n_rep == 1:
459
+ return hidden_states
460
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
461
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
462
+
463
+
464
+ class LlamaAttention(nn.Module):
465
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
466
+
467
+ def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
468
+ super().__init__()
469
+ self.config = config
470
+ self.layer_idx = layer_idx
471
+ if layer_idx is None:
472
+ logger.warning_once(
473
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
474
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
475
+ "when creating this class."
476
+ )
477
+
478
+ self.attention_dropout = config.attention_dropout
479
+ self.hidden_size = config.hidden_size
480
+ self.num_heads = config.num_attention_heads
481
+ self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
482
+ self.num_key_value_heads = config.num_key_value_heads
483
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
484
+ self.max_position_embeddings = config.max_position_embeddings
485
+ self.rope_theta = config.rope_theta
486
+ self.is_causal = True
487
+
488
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
489
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
490
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
491
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
492
+
493
+ # TODO (joao): remove in v4.46 (RoPE is computed in the model, not in the decoder layers)
494
+ self.rotary_emb = LlamaRotaryEmbedding(config=self.config)
495
+
496
+ def forward(
497
+ self,
498
+ hidden_states: torch.Tensor,
499
+ attention_mask: Optional[torch.Tensor] = None,
500
+ position_ids: Optional[torch.LongTensor] = None,
501
+ past_key_value: Optional[Cache] = None,
502
+ output_attentions: bool = False,
503
+ use_cache: bool = False,
504
+ cache_position: Optional[torch.LongTensor] = None,
505
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
506
+ **kwargs,
507
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
508
+ bsz, q_len, _ = hidden_states.size()
509
+
510
+ if self.config.pretraining_tp > 1:
511
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
512
+ query_slices = self.q_proj.weight.split(
513
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
514
+ )
515
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
516
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
517
+
518
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
519
+ query_states = torch.cat(query_states, dim=-1)
520
+
521
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
522
+ key_states = torch.cat(key_states, dim=-1)
523
+
524
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
525
+ value_states = torch.cat(value_states, dim=-1)
526
+
527
+ else:
528
+ query_states = self.q_proj(hidden_states)
529
+ key_states = self.k_proj(hidden_states)
530
+ value_states = self.v_proj(hidden_states)
531
+
532
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
533
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
534
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
535
+
536
+ if position_embeddings is None:
537
+ logger.warning_once(
538
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
539
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
540
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
541
+ "removed and `position_embeddings` will be mandatory."
542
+ )
543
+ cos, sin = self.rotary_emb(value_states, position_ids)
544
+ else:
545
+ cos, sin = position_embeddings
546
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
547
+
548
+ if past_key_value is not None:
549
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
550
+ # cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
551
+ cache_kwargs = {
552
+ "sin": sin, "cos": cos,
553
+ "cache_position": cache_position, # [S_step] 绝对位置
554
+ "merge": True, # True=融合, False=覆盖
555
+ "alpha": 0.5, # EMA 系数,可随 loop 次数调整
556
+ }
557
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
558
+
559
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
560
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
561
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
562
+
563
+ if attention_mask is not None: # no matter the length, we just slice it
564
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
565
+ attn_weights = attn_weights + causal_mask
566
+
567
+ # upcast attention to fp32
568
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
569
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
570
+ attn_output = torch.matmul(attn_weights, value_states)
571
+
572
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
573
+ raise ValueError(
574
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
575
+ f" {attn_output.size()}"
576
+ )
577
+
578
+ attn_output = attn_output.transpose(1, 2).contiguous()
579
+
580
+ attn_output = attn_output.reshape(bsz, q_len, -1)
581
+
582
+ if self.config.pretraining_tp > 1:
583
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
584
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
585
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
586
+ else:
587
+ attn_output = self.o_proj(attn_output)
588
+
589
+ if not output_attentions:
590
+ attn_weights = None
591
+
592
+ return attn_output, attn_weights, past_key_value
593
+
594
+
595
+ class LlamaFlashAttention2(LlamaAttention):
596
+ """
597
+ Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
598
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
599
+ flash attention and deal with padding tokens in case the input contains any of them.
600
+ """
601
+
602
+ def __init__(self, *args, **kwargs):
603
+ super().__init__(*args, **kwargs)
604
+
605
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
606
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
607
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
608
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
609
+
610
+ def forward(
611
+ self,
612
+ hidden_states: torch.Tensor,
613
+ attention_mask: Optional[torch.LongTensor] = None,
614
+ position_ids: Optional[torch.LongTensor] = None,
615
+ past_key_value: Optional[Cache] = None,
616
+ output_attentions: bool = False,
617
+ use_cache: bool = False,
618
+ cache_position: Optional[torch.LongTensor] = None,
619
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
620
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
621
+ if isinstance(past_key_value, StaticCache):
622
+ raise ValueError(
623
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
624
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
625
+ )
626
+
627
+ output_attentions = False
628
+
629
+ bsz, q_len, _ = hidden_states.size()
630
+
631
+ query_states = self.q_proj(hidden_states)
632
+ key_states = self.k_proj(hidden_states)
633
+ value_states = self.v_proj(hidden_states)
634
+
635
+ # Flash attention requires the input to have the shape
636
+ # batch_size x seq_length x head_dim x hidden_dim
637
+ # therefore we just need to keep the original shape
638
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
639
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
640
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
641
+
642
+ if position_embeddings is None:
643
+ logger.warning_once(
644
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
645
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
646
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
647
+ "removed and `position_embeddings` will be mandatory."
648
+ )
649
+ cos, sin = self.rotary_emb(value_states, position_ids)
650
+ else:
651
+ cos, sin = position_embeddings
652
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
653
+
654
+ if past_key_value is not None:
655
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
656
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
657
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
658
+
659
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
660
+ # to be able to avoid many of these transpose/reshape/view.
661
+ query_states = query_states.transpose(1, 2)
662
+ key_states = key_states.transpose(1, 2)
663
+ value_states = value_states.transpose(1, 2)
664
+
665
+ dropout_rate = self.attention_dropout if self.training else 0.0
666
+
667
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
668
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
669
+ # cast them back in the correct dtype just to be sure everything works as expected.
670
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
671
+ # in fp32. (LlamaRMSNorm handles it correctly)
672
+
673
+ input_dtype = query_states.dtype
674
+ if input_dtype == torch.float32:
675
+ if torch.is_autocast_enabled():
676
+ target_dtype = torch.get_autocast_gpu_dtype()
677
+ # Handle the case where the model is quantized
678
+ elif hasattr(self.config, "_pre_quantization_dtype"):
679
+ target_dtype = self.config._pre_quantization_dtype
680
+ else:
681
+ target_dtype = self.q_proj.weight.dtype
682
+
683
+ logger.warning_once(
684
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
685
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
686
+ f" {target_dtype}."
687
+ )
688
+
689
+ query_states = query_states.to(target_dtype)
690
+ key_states = key_states.to(target_dtype)
691
+ value_states = value_states.to(target_dtype)
692
+
693
+ attn_output = _flash_attention_forward(
694
+ query_states,
695
+ key_states,
696
+ value_states,
697
+ attention_mask,
698
+ q_len,
699
+ position_ids=position_ids,
700
+ dropout=dropout_rate,
701
+ sliding_window=getattr(self, "sliding_window", None),
702
+ use_top_left_mask=self._flash_attn_uses_top_left_mask,
703
+ is_causal=self.is_causal,
704
+ )
705
+
706
+ attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
707
+ attn_output = self.o_proj(attn_output)
708
+
709
+ if not output_attentions:
710
+ attn_weights = None
711
+
712
+ return attn_output, attn_weights, past_key_value
713
+
714
+
715
+ class LlamaSdpaAttention(LlamaAttention):
716
+ """
717
+ Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
718
+ `LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
719
+ SDPA API.
720
+ """
721
+
722
+ # Adapted from LlamaAttention.forward
723
+ def forward(
724
+ self,
725
+ hidden_states: torch.Tensor,
726
+ attention_mask: Optional[torch.Tensor] = None,
727
+ position_ids: Optional[torch.LongTensor] = None,
728
+ past_key_value: Optional[Cache] = None,
729
+ output_attentions: bool = False,
730
+ use_cache: bool = False,
731
+ cache_position: Optional[torch.LongTensor] = None,
732
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
733
+ **kwargs,
734
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
735
+ if output_attentions:
736
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
737
+ logger.warning_once(
738
+ "LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
739
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
740
+ )
741
+ return super().forward(
742
+ hidden_states=hidden_states,
743
+ attention_mask=attention_mask,
744
+ position_ids=position_ids,
745
+ past_key_value=past_key_value,
746
+ output_attentions=output_attentions,
747
+ use_cache=use_cache,
748
+ cache_position=cache_position,
749
+ position_embeddings=position_embeddings,
750
+ )
751
+
752
+ bsz, q_len, _ = hidden_states.size()
753
+
754
+ query_states = self.q_proj(hidden_states)
755
+ key_states = self.k_proj(hidden_states)
756
+ value_states = self.v_proj(hidden_states)
757
+
758
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
759
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
760
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
761
+
762
+ if position_embeddings is None:
763
+ logger.warning_once(
764
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
765
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
766
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
767
+ "removed and `position_embeddings` will be mandatory."
768
+ )
769
+ cos, sin = self.rotary_emb(value_states, position_ids)
770
+ else:
771
+ cos, sin = position_embeddings
772
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
773
+
774
+ if past_key_value is not None:
775
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
776
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
777
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
778
+
779
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
780
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
781
+
782
+ causal_mask = attention_mask
783
+ if attention_mask is not None:
784
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
785
+
786
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
787
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
788
+ if query_states.device.type == "cuda" and causal_mask is not None:
789
+ query_states = query_states.contiguous()
790
+ key_states = key_states.contiguous()
791
+ value_states = value_states.contiguous()
792
+
793
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
794
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
795
+ is_causal = True if causal_mask is None and q_len > 1 else False
796
+
797
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
798
+ query_states,
799
+ key_states,
800
+ value_states,
801
+ attn_mask=causal_mask,
802
+ dropout_p=self.attention_dropout if self.training else 0.0,
803
+ is_causal=is_causal,
804
+ )
805
+
806
+ attn_output = attn_output.transpose(1, 2).contiguous()
807
+ attn_output = attn_output.view(bsz, q_len, -1)
808
+
809
+ attn_output = self.o_proj(attn_output)
810
+
811
+ return attn_output, None, past_key_value
812
+
813
+
814
+ LLAMA_ATTENTION_CLASSES = {
815
+ "eager": LlamaAttention,
816
+ "flash_attention_2": LlamaFlashAttention2,
817
+ "sdpa": LlamaSdpaAttention,
818
+ }
819
+
820
+
821
+ class LlamaDecoderLayer(nn.Module):
822
+ def __init__(self, config: LlamaConfig, layer_idx: int):
823
+ super().__init__()
824
+ self.hidden_size = config.hidden_size
825
+
826
+ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
827
+
828
+ self.mlp = LlamaMLP(config)
829
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
830
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
831
+
832
+ def forward(
833
+ self,
834
+ hidden_states: torch.Tensor,
835
+ attention_mask: Optional[torch.Tensor] = None,
836
+ position_ids: Optional[torch.LongTensor] = None,
837
+ past_key_value: Optional[Cache] = None,
838
+ output_attentions: Optional[bool] = False,
839
+ use_cache: Optional[bool] = False,
840
+ cache_position: Optional[torch.LongTensor] = None,
841
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
842
+ **kwargs,
843
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
844
+ """
845
+ Args:
846
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
847
+ attention_mask (`torch.FloatTensor`, *optional*):
848
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
849
+ query_sequence_length, key_sequence_length)` if default attention is used.
850
+ output_attentions (`bool`, *optional*):
851
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
852
+ returned tensors for more detail.
853
+ use_cache (`bool`, *optional*):
854
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
855
+ (see `past_key_values`).
856
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
857
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
858
+ Indices depicting the position of the input sequence tokens in the sequence
859
+ position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
860
+ Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
861
+ with `head_dim` being the embedding dimension of each attention head.
862
+ kwargs (`dict`, *optional*):
863
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
864
+ into the model
865
+ """
866
+ residual = hidden_states
867
+
868
+ hidden_states = self.input_layernorm(hidden_states)
869
+
870
+ # Self Attention
871
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
872
+ hidden_states=hidden_states,
873
+ attention_mask=attention_mask,
874
+ position_ids=position_ids,
875
+ past_key_value=past_key_value,
876
+ output_attentions=output_attentions,
877
+ use_cache=use_cache,
878
+ cache_position=cache_position,
879
+ position_embeddings=position_embeddings,
880
+ **kwargs,
881
+ )
882
+ hidden_states = residual + hidden_states
883
+
884
+ # Fully Connected
885
+ residual = hidden_states
886
+ hidden_states = self.post_attention_layernorm(hidden_states)
887
+ hidden_states = self.mlp(hidden_states)
888
+ hidden_states = residual + hidden_states
889
+
890
+ outputs = (hidden_states,)
891
+
892
+ if output_attentions:
893
+ outputs += (self_attn_weights,)
894
+
895
+ if use_cache:
896
+ outputs += (present_key_value,)
897
+
898
+ return outputs
899
+
900
+
901
+ LLAMA_START_DOCSTRING = r"""
902
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
903
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
904
+ etc.)
905
+
906
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
907
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
908
+ and behavior.
909
+
910
+ Parameters:
911
+ config ([`LlamaConfig`]):
912
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
913
+ load the weights associated with the model, only the configuration. Check out the
914
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
915
+ """
916
+
917
+
918
+ @add_start_docstrings(
919
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
920
+ LLAMA_START_DOCSTRING,
921
+ )
922
+ class LlamaPreTrainedModel(PreTrainedModel):
923
+ config_class = LlamaConfig
924
+ base_model_prefix = "model"
925
+ supports_gradient_checkpointing = True
926
+ _no_split_modules = ["LlamaDecoderLayer"]
927
+ _skip_keys_device_placement = ["past_key_values"]
928
+ _supports_flash_attn_2 = True
929
+ _supports_sdpa = True
930
+ _supports_cache_class = True
931
+ _supports_quantized_cache = True
932
+ _supports_static_cache = True
933
+
934
+ def _init_weights(self, module):
935
+ std = self.config.initializer_range
936
+ if isinstance(module, nn.Linear):
937
+ module.weight.data.normal_(mean=0.0, std=std)
938
+ if module.bias is not None:
939
+ module.bias.data.zero_()
940
+ elif isinstance(module, nn.Embedding):
941
+ module.weight.data.normal_(mean=0.0, std=std)
942
+ if module.padding_idx is not None:
943
+ module.weight.data[module.padding_idx].zero_()
944
+
945
+
946
+ LLAMA_INPUTS_DOCSTRING = r"""
947
+ Args:
948
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
949
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
950
+ it.
951
+
952
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
953
+ [`PreTrainedTokenizer.__call__`] for details.
954
+
955
+ [What are input IDs?](../glossary#input-ids)
956
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
957
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
958
+
959
+ - 1 for tokens that are **not masked**,
960
+ - 0 for tokens that are **masked**.
961
+
962
+ [What are attention masks?](../glossary#attention-mask)
963
+
964
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
965
+ [`PreTrainedTokenizer.__call__`] for details.
966
+
967
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
968
+ `past_key_values`).
969
+
970
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
971
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
972
+ information on the default strategy.
973
+
974
+ - 1 indicates the head is **not masked**,
975
+ - 0 indicates the head is **masked**.
976
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
977
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
978
+ config.n_positions - 1]`.
979
+
980
+ [What are position IDs?](../glossary#position-ids)
981
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
982
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
983
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
984
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
985
+
986
+ Two formats are allowed:
987
+ - a [`~cache_utils.Cache`] instance, see our
988
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
989
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
990
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
991
+ cache format.
992
+
993
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
994
+ legacy cache format will be returned.
995
+
996
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
997
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
998
+ of shape `(batch_size, sequence_length)`.
999
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1000
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1001
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1002
+ model's internal embedding lookup matrix.
1003
+ use_cache (`bool`, *optional*):
1004
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1005
+ `past_key_values`).
1006
+ output_attentions (`bool`, *optional*):
1007
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1008
+ tensors for more detail.
1009
+ output_hidden_states (`bool`, *optional*):
1010
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1011
+ more detail.
1012
+ return_dict (`bool`, *optional*):
1013
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1014
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
1015
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
1016
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
1017
+ the complete sequence length.
1018
+ """
1019
+
1020
+
1021
+ @add_start_docstrings(
1022
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
1023
+ LLAMA_START_DOCSTRING,
1024
+ )
1025
+ class LlamaModel(LlamaPreTrainedModel):
1026
+ """
1027
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
1028
+
1029
+ Args:
1030
+ config: LlamaConfig
1031
+ """
1032
+
1033
+ def __init__(self, config: LlamaConfig):
1034
+ super().__init__(config)
1035
+ self.padding_idx = config.pad_token_id
1036
+ self.vocab_size = config.vocab_size
1037
+
1038
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1039
+ self.layers = nn.ModuleList(
1040
+ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1041
+ )
1042
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1043
+ self.rotary_emb = LlamaRotaryEmbedding(config=config)
1044
+ self.gradient_checkpointing = False
1045
+
1046
+ # Initialize weights and apply final processing
1047
+ self.post_init()
1048
+
1049
+ def get_input_embeddings(self):
1050
+ return self.embed_tokens
1051
+
1052
+ def set_input_embeddings(self, value):
1053
+ self.embed_tokens = value
1054
+
1055
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1056
+ def forward(
1057
+ self,
1058
+ input_ids: torch.LongTensor = None,
1059
+ attention_mask: Optional[torch.Tensor] = None,
1060
+ position_ids: Optional[torch.LongTensor] = None,
1061
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1062
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1063
+ use_cache: Optional[bool] = None,
1064
+ output_attentions: Optional[bool] = None,
1065
+ output_hidden_states: Optional[bool] = None,
1066
+ return_dict: Optional[bool] = None,
1067
+ cache_position: Optional[torch.LongTensor] = None,
1068
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1069
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1070
+ output_hidden_states = (
1071
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1072
+ )
1073
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1074
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1075
+
1076
+ if (input_ids is None) ^ (inputs_embeds is not None):
1077
+ raise ValueError(
1078
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
1079
+ )
1080
+
1081
+ if self.gradient_checkpointing and self.training and use_cache:
1082
+ logger.warning_once(
1083
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
1084
+ )
1085
+ use_cache = False
1086
+
1087
+ if inputs_embeds is None:
1088
+ inputs_embeds = self.embed_tokens(input_ids)
1089
+
1090
+ # kept for BC (non `Cache` `past_key_values` inputs)
1091
+ return_legacy_cache = False
1092
+ if use_cache and not isinstance(past_key_values, Cache):
1093
+ return_legacy_cache = True
1094
+ if past_key_values is None:
1095
+ past_key_values = DynamicCache()
1096
+ else:
1097
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1098
+ logger.warning_once(
1099
+ "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
1100
+ "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
1101
+ "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
1102
+ )
1103
+
1104
+ if cache_position is None:
1105
+ past_seen_tokens = past_key_values.max_cache_len if past_key_values is not None else 0
1106
+ cache_position = torch.arange(
1107
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
1108
+ )
1109
+ if position_ids is None:
1110
+ position_ids = cache_position.unsqueeze(0)
1111
+
1112
+ causal_mask = self._update_causal_mask(
1113
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
1114
+ )
1115
+ hidden_states = inputs_embeds
1116
+
1117
+ # create position embeddings to be shared across the decoder layers
1118
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
1119
+
1120
+ # decoder layers
1121
+ all_hidden_states = () if output_hidden_states else None
1122
+ all_self_attns = () if output_attentions else None
1123
+ next_decoder_cache = None
1124
+
1125
+ for decoder_layer in self.layers:
1126
+ if output_hidden_states:
1127
+ all_hidden_states += (hidden_states,)
1128
+
1129
+ if self.gradient_checkpointing and self.training:
1130
+ layer_outputs = self._gradient_checkpointing_func(
1131
+ decoder_layer.__call__,
1132
+ hidden_states,
1133
+ causal_mask,
1134
+ position_ids,
1135
+ past_key_values,
1136
+ output_attentions,
1137
+ use_cache,
1138
+ cache_position,
1139
+ position_embeddings,
1140
+ )
1141
+ else:
1142
+ layer_outputs = decoder_layer(
1143
+ hidden_states,
1144
+ attention_mask=causal_mask,
1145
+ position_ids=position_ids,
1146
+ past_key_value=past_key_values,
1147
+ output_attentions=output_attentions,
1148
+ use_cache=use_cache,
1149
+ cache_position=cache_position,
1150
+ position_embeddings=position_embeddings,
1151
+ )
1152
+
1153
+ hidden_states = layer_outputs[0]
1154
+
1155
+ if use_cache:
1156
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1157
+
1158
+ if output_attentions:
1159
+ all_self_attns += (layer_outputs[1],)
1160
+
1161
+ hidden_states = self.norm(hidden_states)
1162
+
1163
+ # add hidden states from the last decoder layer
1164
+ if output_hidden_states:
1165
+ all_hidden_states += (hidden_states,)
1166
+
1167
+ next_cache = next_decoder_cache if use_cache else None
1168
+ if return_legacy_cache:
1169
+ next_cache = next_cache.to_legacy_cache()
1170
+
1171
+ if not return_dict:
1172
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1173
+ return BaseModelOutputWithPast(
1174
+ last_hidden_state=hidden_states,
1175
+ past_key_values=next_cache,
1176
+ hidden_states=all_hidden_states,
1177
+ attentions=all_self_attns,
1178
+ )
1179
+
1180
+ def _update_causal_mask(
1181
+ self,
1182
+ attention_mask: torch.Tensor,
1183
+ input_tensor: torch.Tensor,
1184
+ cache_position: torch.Tensor,
1185
+ past_key_values: Cache,
1186
+ output_attentions: bool,
1187
+ ):
1188
+ if self.config._attn_implementation == "flash_attention_2":
1189
+ if attention_mask is not None and 0.0 in attention_mask:
1190
+ return attention_mask
1191
+ return None
1192
+
1193
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1194
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1195
+ # to infer the attention mask.
1196
+ past_seen_tokens = past_key_values.max_cache_len if past_key_values is not None else 0
1197
+ using_static_cache = isinstance(past_key_values, StaticCache)
1198
+
1199
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
1200
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
1201
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1202
+ attention_mask,
1203
+ inputs_embeds=input_tensor,
1204
+ past_key_values_length=past_seen_tokens,
1205
+ is_training=self.training,
1206
+ ):
1207
+ return None
1208
+
1209
+ dtype, device = input_tensor.dtype, input_tensor.device
1210
+ min_dtype = torch.finfo(dtype).min
1211
+ sequence_length = int(input_tensor.shape[1])
1212
+ if using_static_cache:
1213
+ target_length = int(past_key_values.max_cache_len)
1214
+ else:
1215
+ target_length = int(
1216
+ attention_mask.shape[-1]
1217
+ if isinstance(attention_mask, torch.Tensor)
1218
+ else past_seen_tokens + sequence_length + 1
1219
+ )
1220
+
1221
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
1222
+ causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
1223
+ attention_mask,
1224
+ sequence_length=sequence_length,
1225
+ target_length=target_length,
1226
+ dtype=dtype,
1227
+ device=device,
1228
+ min_dtype=min_dtype,
1229
+ cache_position=cache_position,
1230
+ batch_size=input_tensor.shape[0],
1231
+ )
1232
+
1233
+ if (
1234
+ self.config._attn_implementation == "sdpa"
1235
+ and attention_mask is not None
1236
+ and attention_mask.device.type == "cuda"
1237
+ and not output_attentions
1238
+ ):
1239
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1240
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1241
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1242
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1243
+
1244
+ return causal_mask
1245
+
1246
+
1247
+ @add_start_docstrings(
1248
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
1249
+ LLAMA_START_DOCSTRING,
1250
+ )
1251
+ class LoopLlamaModel(LlamaPreTrainedModel):
1252
+ """
1253
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
1254
+
1255
+ Args:
1256
+ config: LlamaConfig
1257
+ """
1258
+
1259
+ def __init__(self, config: LlamaConfig):
1260
+ super().__init__(config)
1261
+ self.padding_idx = config.pad_token_id
1262
+ self.vocab_size = config.vocab_size
1263
+
1264
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1265
+ self.layers = nn.ModuleList(
1266
+ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1267
+ )
1268
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1269
+ self.rotary_emb = LlamaRotaryEmbedding(config=config)
1270
+ self.gradient_checkpointing = False
1271
+
1272
+ # Initialize weights and apply final processing
1273
+ self.post_init()
1274
+
1275
+ # Set Loop times
1276
+ self.loop_times = config.loop_times
1277
+
1278
+ def get_input_embeddings(self):
1279
+ return self.embed_tokens
1280
+
1281
+ def set_input_embeddings(self, value):
1282
+ self.embed_tokens = value
1283
+
1284
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1285
+ def forward(
1286
+ self,
1287
+ input_ids: torch.LongTensor = None,
1288
+ attention_mask: Optional[torch.Tensor] = None,
1289
+ position_ids: Optional[torch.LongTensor] = None,
1290
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1291
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1292
+ use_cache: Optional[bool] = None,
1293
+ output_attentions: Optional[bool] = None,
1294
+ output_hidden_states: Optional[bool] = None,
1295
+ return_dict: Optional[bool] = None,
1296
+ cache_position: Optional[torch.LongTensor] = None,
1297
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1298
+ self.config.use_cache = True
1299
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1300
+ output_hidden_states = (
1301
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1302
+ )
1303
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1304
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1305
+
1306
+ if (input_ids is None) ^ (inputs_embeds is not None):
1307
+ raise ValueError(
1308
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
1309
+ )
1310
+
1311
+ if self.gradient_checkpointing and self.training and use_cache:
1312
+ logger.warning_once(
1313
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
1314
+ )
1315
+ use_cache = False
1316
+
1317
+ if inputs_embeds is None:
1318
+ inputs_embeds = self.embed_tokens(input_ids)
1319
+
1320
+ # kept for BC (non `Cache` `past_key_values` inputs)
1321
+ return_legacy_cache = False
1322
+
1323
+
1324
+ if cache_position is None:
1325
+ past_seen_tokens = past_key_values.max_cache_len if past_key_values is not None else 0
1326
+ cache_position = torch.arange(
1327
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
1328
+ )
1329
+ if position_ids is None:
1330
+ position_ids = cache_position.unsqueeze(0)
1331
+
1332
+ if use_cache:
1333
+ if past_key_values is None or not isinstance(past_key_values, StaticCache):
1334
+ max_cache_len = (
1335
+ attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor)
1336
+ else int(cache_position.max().item()) + 1
1337
+ ) + 512
1338
+ past_key_values = LoopMergingStaticCache(
1339
+ config=self.config,
1340
+ max_batch_size=inputs_embeds.shape[0],
1341
+ max_cache_len=max_cache_len,
1342
+ device=inputs_embeds.device,
1343
+ dtype=inputs_embeds.dtype,
1344
+ default_alpha=0.9,
1345
+ )
1346
+
1347
+ hidden_states = inputs_embeds
1348
+
1349
+ # create position embeddings to be shared across the decoder layers
1350
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
1351
+
1352
+ # decoder layers
1353
+ all_hidden_states = () if output_hidden_states else None
1354
+ all_self_attns = () if output_attentions else None
1355
+ next_decoder_cache = None
1356
+ assert isinstance(past_key_values, StaticCache), "Should always use static cache path"
1357
+ K = past_key_values.max_cache_len
1358
+ for i in range(self.loop_times):
1359
+ causal_mask = self._update_causal_mask(
1360
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
1361
+ )
1362
+ if cache_position is not None:
1363
+ u, c = torch.unique(cache_position, return_counts=True)
1364
+ if (c > 1).any():
1365
+ print(f"[WARN] duplicate positions this step: {u[c>1].tolist()}")
1366
+
1367
+ for decoder_layer in self.layers:
1368
+ if output_hidden_states:
1369
+ all_hidden_states += (hidden_states,)
1370
+
1371
+ if self.gradient_checkpointing and self.training:
1372
+ layer_outputs = self._gradient_checkpointing_func(
1373
+ decoder_layer.__call__,
1374
+ hidden_states,
1375
+ causal_mask,
1376
+ position_ids,
1377
+ past_key_values,
1378
+ output_attentions,
1379
+ use_cache,
1380
+ cache_position,
1381
+ position_embeddings,
1382
+ )
1383
+ else:
1384
+ layer_outputs = decoder_layer(
1385
+ hidden_states,
1386
+ attention_mask=causal_mask,
1387
+ position_ids=position_ids,
1388
+ past_key_value=past_key_values,
1389
+ output_attentions=output_attentions,
1390
+ use_cache=use_cache,
1391
+ cache_position=cache_position,
1392
+ position_embeddings=position_embeddings,
1393
+ )
1394
+
1395
+ hidden_states = layer_outputs[0]
1396
+
1397
+ if output_attentions:
1398
+ all_self_attns += (layer_outputs[1],)
1399
+
1400
+ if use_cache:
1401
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1402
+
1403
+
1404
+ if next_decoder_cache is not None:
1405
+ past_key_values = next_decoder_cache
1406
+ hidden_states = self.norm(hidden_states)
1407
+ # add hidden states from the last decoder layer
1408
+ if output_hidden_states:
1409
+ all_hidden_states += (hidden_states,)
1410
+
1411
+ next_cache = next_decoder_cache if use_cache else None
1412
+ if return_legacy_cache:
1413
+ next_cache = next_cache.to_legacy_cache()
1414
+
1415
+ if not return_dict:
1416
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1417
+ return BaseModelOutputWithPast(
1418
+ last_hidden_state=hidden_states,
1419
+ past_key_values=next_cache,
1420
+ hidden_states=all_hidden_states,
1421
+ attentions=all_self_attns,
1422
+ )
1423
+
1424
+ def _update_causal_mask(
1425
+ self,
1426
+ attention_mask: torch.Tensor,
1427
+ input_tensor: torch.Tensor,
1428
+ cache_position: torch.Tensor,
1429
+ past_key_values: Cache,
1430
+ output_attentions: bool,
1431
+ ):
1432
+ if self.config._attn_implementation == "flash_attention_2":
1433
+ if attention_mask is not None and 0.0 in attention_mask:
1434
+ return attention_mask
1435
+ return None
1436
+
1437
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1438
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1439
+ # to infer the attention mask.
1440
+ past_seen_tokens = past_key_values.max_cache_len if past_key_values is not None else 0
1441
+ using_static_cache = isinstance(past_key_values, StaticCache)
1442
+
1443
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
1444
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
1445
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1446
+ attention_mask,
1447
+ inputs_embeds=input_tensor,
1448
+ past_key_values_length=past_seen_tokens,
1449
+ is_training=self.training,
1450
+ ):
1451
+ return None
1452
+
1453
+ dtype, device = input_tensor.dtype, input_tensor.device
1454
+ min_dtype = torch.finfo(dtype).min
1455
+ sequence_length = int(input_tensor.shape[1])
1456
+
1457
+ mask_length = attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length
1458
+ if using_static_cache:
1459
+ # 获取 max_cache_len 并确保是整数
1460
+ cache_max_len = getattr(past_key_values, "max_cache_len", 0)
1461
+ if torch.is_tensor(cache_max_len):
1462
+ cache_max_len = int(cache_max_len.item())
1463
+ else:
1464
+ cache_max_len = int(cache_max_len) if cache_max_len else 0
1465
+
1466
+ # 计算 safe_target,确保所有值都是整数
1467
+ safe_target = max(
1468
+ cache_max_len,
1469
+ past_seen_tokens + sequence_length,
1470
+ mask_length
1471
+ )
1472
+ target_length = int(safe_target)
1473
+ else:
1474
+ target_length = int(max(mask_length, past_seen_tokens + sequence_length))
1475
+
1476
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
1477
+ causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
1478
+ attention_mask,
1479
+ sequence_length=sequence_length,
1480
+ target_length=target_length,
1481
+ dtype=dtype,
1482
+ device=device,
1483
+ min_dtype=min_dtype,
1484
+ cache_position=cache_position,
1485
+ batch_size=input_tensor.shape[0],
1486
+ )
1487
+
1488
+ if (
1489
+ self.config._attn_implementation == "sdpa"
1490
+ and attention_mask is not None
1491
+ and attention_mask.device.type == "cuda"
1492
+ and not output_attentions
1493
+ ):
1494
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1495
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1496
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1497
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1498
+
1499
+ return causal_mask
1500
+
1501
+ class LlamaForCausalLM(LlamaPreTrainedModel, GenerationMixin):
1502
+ _tied_weights_keys = ["lm_head.weight"]
1503
+
1504
+ def __init__(self, config):
1505
+ super().__init__(config)
1506
+ self.model = LlamaModel(config)
1507
+ self.vocab_size = config.vocab_size
1508
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1509
+
1510
+ # Initialize weights and apply final processing
1511
+ self.post_init()
1512
+
1513
+ def get_input_embeddings(self):
1514
+ return self.model.embed_tokens
1515
+
1516
+ def set_input_embeddings(self, value):
1517
+ self.model.embed_tokens = value
1518
+
1519
+ def get_output_embeddings(self):
1520
+ return self.lm_head
1521
+
1522
+ def set_output_embeddings(self, new_embeddings):
1523
+ self.lm_head = new_embeddings
1524
+
1525
+ def set_decoder(self, decoder):
1526
+ self.model = decoder
1527
+
1528
+ def get_decoder(self):
1529
+ return self.model
1530
+
1531
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1532
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1533
+ def forward(
1534
+ self,
1535
+ input_ids: torch.LongTensor = None,
1536
+ attention_mask: Optional[torch.Tensor] = None,
1537
+ position_ids: Optional[torch.LongTensor] = None,
1538
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1539
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1540
+ labels: Optional[torch.LongTensor] = None,
1541
+ use_cache: Optional[bool] = None,
1542
+ output_attentions: Optional[bool] = None,
1543
+ output_hidden_states: Optional[bool] = None,
1544
+ return_dict: Optional[bool] = None,
1545
+ cache_position: Optional[torch.LongTensor] = None,
1546
+ num_logits_to_keep: int = 0,
1547
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1548
+ r"""
1549
+ Args:
1550
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1551
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1552
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1553
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1554
+
1555
+ num_logits_to_keep (`int`, *optional*):
1556
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
1557
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
1558
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
1559
+
1560
+ Returns:
1561
+
1562
+ Example:
1563
+
1564
+ ```python
1565
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
1566
+
1567
+ >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
1568
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
1569
+
1570
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1571
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1572
+
1573
+ >>> # Generate
1574
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1575
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1576
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1577
+ ```"""
1578
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1579
+ output_hidden_states = (
1580
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1581
+ )
1582
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1583
+
1584
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1585
+ outputs = self.model(
1586
+ input_ids=input_ids,
1587
+ attention_mask=attention_mask,
1588
+ position_ids=position_ids,
1589
+ past_key_values=past_key_values,
1590
+ inputs_embeds=inputs_embeds,
1591
+ use_cache=use_cache,
1592
+ output_attentions=output_attentions,
1593
+ output_hidden_states=output_hidden_states,
1594
+ return_dict=return_dict,
1595
+ cache_position=cache_position,
1596
+ )
1597
+
1598
+ hidden_states = outputs[0]
1599
+ if self.config.pretraining_tp > 1:
1600
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1601
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1602
+ logits = torch.cat(logits, dim=-1)
1603
+ else:
1604
+ if labels is None and not is_torchdynamo_compiling():
1605
+ logger.warning_once(
1606
+ "Starting from v4.46, the `logits` model output will have the same type as the model (except at train time, where it will always be FP32)"
1607
+ )
1608
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
1609
+ # TODO: remove the float() operation in v4.46
1610
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]).float()
1611
+
1612
+ loss = None
1613
+ if labels is not None:
1614
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
1615
+ logits = logits.float()
1616
+ # Shift so that tokens < n predict n
1617
+ shift_logits = logits[..., :-1, :].contiguous()
1618
+ shift_labels = labels[..., 1:].contiguous()
1619
+ # Flatten the tokens
1620
+ loss_fct = CrossEntropyLoss()
1621
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1622
+ shift_labels = shift_labels.view(-1)
1623
+ # Enable model parallelism
1624
+ shift_labels = shift_labels.to(shift_logits.device)
1625
+ loss = loss_fct(shift_logits, shift_labels)
1626
+
1627
+ if not return_dict:
1628
+ output = (logits,) + outputs[1:]
1629
+ return (loss,) + output if loss is not None else output
1630
+
1631
+ return CausalLMOutputWithPast(
1632
+ loss=loss,
1633
+ logits=logits,
1634
+ past_key_values=outputs.past_key_values,
1635
+ hidden_states=outputs.hidden_states,
1636
+ attentions=outputs.attentions,
1637
+ )
1638
+
1639
+ def prepare_inputs_for_generation(
1640
+ self,
1641
+ input_ids,
1642
+ past_key_values=None,
1643
+ attention_mask=None,
1644
+ inputs_embeds=None,
1645
+ cache_position=None,
1646
+ position_ids=None,
1647
+ use_cache=True,
1648
+ num_logits_to_keep=None,
1649
+ **kwargs,
1650
+ ):
1651
+ # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
1652
+ # Exception 1: when passing input_embeds, input_ids may be missing entries
1653
+ # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
1654
+ if past_key_values is not None:
1655
+ if inputs_embeds is not None: # Exception 1
1656
+ input_ids = input_ids[:, -cache_position.shape[0] :]
1657
+ elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
1658
+ input_ids = input_ids[:, cache_position]
1659
+
1660
+ if attention_mask is not None and position_ids is None:
1661
+ # create position_ids on the fly for batch generation
1662
+ position_ids = attention_mask.long().cumsum(-1) - 1
1663
+ position_ids.masked_fill_(attention_mask == 0, 1)
1664
+ if past_key_values:
1665
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1666
+
1667
+ # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
1668
+ position_ids = position_ids.clone(memory_format=torch.contiguous_format)
1669
+
1670
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1671
+ if inputs_embeds is not None and cache_position[0] == 0:
1672
+ model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
1673
+ else:
1674
+ # The clone here is for the same reason as for `position_ids`.
1675
+ model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
1676
+
1677
+ if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
1678
+ if model_inputs["inputs_embeds"] is not None:
1679
+ batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
1680
+ device = model_inputs["inputs_embeds"].device
1681
+ else:
1682
+ batch_size, sequence_length = model_inputs["input_ids"].shape
1683
+ device = model_inputs["input_ids"].device
1684
+
1685
+ dtype = self.lm_head.weight.dtype
1686
+ min_dtype = torch.finfo(dtype).min
1687
+
1688
+ attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
1689
+ attention_mask,
1690
+ sequence_length=sequence_length,
1691
+ target_length=past_key_values.get_seq_length(),
1692
+ dtype=dtype,
1693
+ device=device,
1694
+ min_dtype=min_dtype,
1695
+ cache_position=cache_position,
1696
+ batch_size=batch_size,
1697
+ )
1698
+
1699
+ if num_logits_to_keep is not None:
1700
+ model_inputs["num_logits_to_keep"] = num_logits_to_keep
1701
+
1702
+ model_inputs.update(
1703
+ {
1704
+ "position_ids": position_ids,
1705
+ "cache_position": cache_position,
1706
+ "past_key_values": past_key_values,
1707
+ "use_cache": use_cache,
1708
+ "attention_mask": attention_mask,
1709
+ }
1710
+ )
1711
+ return model_inputs
1712
+
1713
+ class LoopLlamaForCausalLM(LlamaPreTrainedModel, GenerationMixin):
1714
+ _tied_weights_keys = ["lm_head.weight"]
1715
+
1716
+ def __init__(self, config):
1717
+ super().__init__(config)
1718
+ self.model = LoopLlamaModel(config)
1719
+ self.vocab_size = config.vocab_size
1720
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1721
+
1722
+ # Initialize weights and apply final processing
1723
+ self.post_init()
1724
+
1725
+ def get_input_embeddings(self):
1726
+ return self.model.embed_tokens
1727
+
1728
+ def set_input_embeddings(self, value):
1729
+ self.model.embed_tokens = value
1730
+
1731
+ def get_output_embeddings(self):
1732
+ return self.lm_head
1733
+
1734
+ def set_output_embeddings(self, new_embeddings):
1735
+ self.lm_head = new_embeddings
1736
+
1737
+ def set_decoder(self, decoder):
1738
+ self.model = decoder
1739
+
1740
+ def get_decoder(self):
1741
+ return self.model
1742
+
1743
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1744
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1745
+ def forward(
1746
+ self,
1747
+ input_ids: torch.LongTensor = None,
1748
+ attention_mask: Optional[torch.Tensor] = None,
1749
+ position_ids: Optional[torch.LongTensor] = None,
1750
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1751
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1752
+ labels: Optional[torch.LongTensor] = None,
1753
+ use_cache: Optional[bool] = None,
1754
+ output_attentions: Optional[bool] = None,
1755
+ output_hidden_states: Optional[bool] = None,
1756
+ return_dict: Optional[bool] = None,
1757
+ cache_position: Optional[torch.LongTensor] = None,
1758
+ num_logits_to_keep: int = 0,
1759
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1760
+ r"""
1761
+ Args:
1762
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1763
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1764
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1765
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1766
+
1767
+ num_logits_to_keep (`int`, *optional*):
1768
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
1769
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
1770
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
1771
+
1772
+ Returns:
1773
+
1774
+ Example:
1775
+
1776
+ ```python
1777
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
1778
+
1779
+ >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
1780
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
1781
+
1782
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1783
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1784
+
1785
+ >>> # Generate
1786
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1787
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1788
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1789
+ ```"""
1790
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1791
+ output_hidden_states = (
1792
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1793
+ )
1794
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1795
+
1796
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1797
+ outputs = self.model(
1798
+ input_ids=input_ids,
1799
+ attention_mask=attention_mask,
1800
+ position_ids=position_ids,
1801
+ past_key_values=past_key_values,
1802
+ inputs_embeds=inputs_embeds,
1803
+ use_cache=use_cache,
1804
+ output_attentions=output_attentions,
1805
+ output_hidden_states=output_hidden_states,
1806
+ return_dict=return_dict,
1807
+ cache_position=cache_position,
1808
+ )
1809
+
1810
+ hidden_states = outputs[0]
1811
+ if self.config.pretraining_tp > 1:
1812
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1813
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1814
+ logits = torch.cat(logits, dim=-1)
1815
+ else:
1816
+ if labels is None and not is_torchdynamo_compiling():
1817
+ logger.warning_once(
1818
+ "Starting from v4.46, the `logits` model output will have the same type as the model (except at train time, where it will always be FP32)"
1819
+ )
1820
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
1821
+ # TODO: remove the float() operation in v4.46
1822
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]).float()
1823
+
1824
+ loss = None
1825
+ if labels is not None:
1826
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
1827
+ logits = logits.float()
1828
+ # Shift so that tokens < n predict n
1829
+ shift_logits = logits[..., :-1, :].contiguous()
1830
+ shift_labels = labels[..., 1:].contiguous()
1831
+ # Flatten the tokens
1832
+ loss_fct = CrossEntropyLoss()
1833
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1834
+ shift_labels = shift_labels.view(-1)
1835
+ # Enable model parallelism
1836
+ shift_labels = shift_labels.to(shift_logits.device)
1837
+ loss = loss_fct(shift_logits, shift_labels)
1838
+
1839
+ if not return_dict:
1840
+ output = (logits,) + outputs[1:]
1841
+ return (loss,) + output if loss is not None else output
1842
+
1843
+ return CausalLMOutputWithPast(
1844
+ loss=loss,
1845
+ logits=logits,
1846
+ past_key_values=outputs.past_key_values,
1847
+ hidden_states=outputs.hidden_states,
1848
+ attentions=outputs.attentions,
1849
+ )
1850
+
1851
+ def prepare_inputs_for_generation(
1852
+ self,
1853
+ input_ids,
1854
+ past_key_values=None,
1855
+ attention_mask=None,
1856
+ inputs_embeds=None,
1857
+ cache_position=None,
1858
+ position_ids=None,
1859
+ use_cache=True,
1860
+ num_logits_to_keep=None,
1861
+ **kwargs,
1862
+ ):
1863
+ # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
1864
+ # Exception 1: when passing input_embeds, input_ids may be missing entries
1865
+ # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
1866
+ if past_key_values is not None:
1867
+ if inputs_embeds is not None: # Exception 1
1868
+ input_ids = input_ids[:, -cache_position.shape[0] :]
1869
+ elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
1870
+ input_ids = input_ids[:, cache_position]
1871
+
1872
+ if attention_mask is not None and position_ids is None:
1873
+ # create position_ids on the fly for batch generation
1874
+ position_ids = attention_mask.long().cumsum(-1) - 1
1875
+ position_ids.masked_fill_(attention_mask == 0, 1)
1876
+ if past_key_values:
1877
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1878
+
1879
+ # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
1880
+ position_ids = position_ids.clone(memory_format=torch.contiguous_format)
1881
+
1882
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1883
+ if inputs_embeds is not None and cache_position[0] == 0:
1884
+ model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
1885
+ else:
1886
+ # The clone here is for the same reason as for `position_ids`.
1887
+ model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
1888
+
1889
+ if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
1890
+ if model_inputs["inputs_embeds"] is not None:
1891
+ batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
1892
+ device = model_inputs["inputs_embeds"].device
1893
+ else:
1894
+ batch_size, sequence_length = model_inputs["input_ids"].shape
1895
+ device = model_inputs["input_ids"].device
1896
+
1897
+ dtype = self.lm_head.weight.dtype
1898
+ min_dtype = torch.finfo(dtype).min
1899
+
1900
+ #### [NEW] ####
1901
+ current_length = attention_mask.shape[-1]
1902
+ if hasattr(past_key_values, 'max_cache_len'):
1903
+ max_cache_len = past_key_values.max_cache_len
1904
+ if torch.is_tensor(max_cache_len):
1905
+ max_cache_len = int(max_cache_len.item())
1906
+ else:
1907
+ max_cache_len = int(max_cache_len)
1908
+ target_length = max(current_length, max_cache_len)
1909
+ else:
1910
+ # 如果没有max_cache_len,至少使用当前长度
1911
+ target_length = current_length
1912
+
1913
+ attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
1914
+ attention_mask,
1915
+ sequence_length=sequence_length,
1916
+ target_length=target_length,
1917
+ dtype=dtype,
1918
+ device=device,
1919
+ min_dtype=min_dtype,
1920
+ cache_position=cache_position,
1921
+ batch_size=batch_size,
1922
+ )
1923
+
1924
+ if num_logits_to_keep is not None:
1925
+ model_inputs["num_logits_to_keep"] = num_logits_to_keep
1926
+
1927
+ model_inputs.update(
1928
+ {
1929
+ "position_ids": position_ids,
1930
+ "cache_position": cache_position,
1931
+ "past_key_values": past_key_values,
1932
+ "use_cache": use_cache,
1933
+ "attention_mask": attention_mask,
1934
+ }
1935
+ )
1936
+ return model_inputs
setup_script.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # models/loopllama-1B/setup_from_llama.py
3
+
4
+ """
5
+ 从 Llama 3.2-1B 权重初始化 LoopLlama 模型
6
+ """
7
+
8
+ import os
9
+ import torch
10
+ from transformers import LlamaForCausalLM, LlamaConfig, LlamaTokenizer
11
+ from configuration_llama import LlamaConfig
12
+ from modeling_llama import LoopLlamaForCausalLM
13
+
14
+ def setup_loopllama_from_pretrained(
15
+ source_model_path="meta-llama/Llama-3.2-1B",
16
+ target_path="./",
17
+ loop_times=2
18
+ ):
19
+ """
20
+ 从预训练的 Llama 模型创建 LoopLlama 模型
21
+
22
+ Args:
23
+ source_model_path: 源 Llama 模型路径
24
+ target_path: 目标保存路径
25
+ loop_times: 循环次数
26
+ """
27
+ print(f"Loading original Llama model from {source_model_path}...")
28
+
29
+ # 加载原始模型和配置
30
+ original_model = LlamaForCausalLM.from_pretrained(
31
+ source_model_path,
32
+ torch_dtype=torch.bfloat16,
33
+ trust_remote_code=True
34
+ )
35
+ original_config = original_model.config
36
+
37
+ # 加载 tokenizer
38
+ try:
39
+ tokenizer = LlamaTokenizer.from_pretrained(source_model_path)
40
+ except:
41
+ from transformers import AutoTokenizer
42
+ tokenizer = AutoTokenizer.from_pretrained(source_model_path)
43
+
44
+ print("Creating LoopLlama configuration...")
45
+
46
+ # 创建 LoopLlama 配置
47
+ loop_config = LlamaConfig(
48
+ **original_config.to_dict(),
49
+ loop_times=loop_times
50
+ )
51
+
52
+ print(f"Creating LoopLlama model with {loop_times} loop times...")
53
+
54
+ # 创建 LoopLlama 模型
55
+ loop_model = LoopLlamaForCausalLM(loop_config)
56
+
57
+ print("Copying weights from original model...")
58
+
59
+ # 复制权重 (只复制存在的键)
60
+ original_state_dict = original_model.state_dict()
61
+ loop_state_dict = loop_model.state_dict()
62
+
63
+ # 复制匹配的权重
64
+ for key in loop_state_dict.keys():
65
+ if key in original_state_dict:
66
+ print(f"Copying {key}")
67
+ loop_state_dict[key].copy_(original_state_dict[key])
68
+ else:
69
+ print(f"Warning: {key} not found in original model")
70
+
71
+ print(f"Saving LoopLlama model to {target_path}...")
72
+
73
+ # 保存模型和配置
74
+ loop_model.save_pretrained(target_path)
75
+ loop_config.save_pretrained(target_path)
76
+ tokenizer.save_pretrained(target_path)
77
+
78
+ print("Setup completed!")
79
+
80
+ # 验证模型可以加载
81
+ print("Verifying model loading...")
82
+ test_model = LoopLlamaForCausalLM.from_pretrained(
83
+ target_path,
84
+ trust_remote_code=True,
85
+ torch_dtype=torch.bfloat16
86
+ )
87
+ print(f"Model loaded successfully. Loop times: {test_model.config.loop_times}")
88
+
89
+ return loop_model, tokenizer
90
+
91
+ if __name__ == "__main__":
92
+ import argparse
93
+
94
+ parser = argparse.ArgumentParser()
95
+ parser.add_argument("--source", default="/9950backfile/zjy_2/loopllama_cpt/loopllama-cpt/models/llama3_2-1B", help="Source Llama model")
96
+ parser.add_argument("--target", default="./", help="Target directory")
97
+ parser.add_argument("--loop_times", type=int, default=3, help="Number of loop times")
98
+
99
+ args = parser.parse_args()
100
+
101
+ setup_loopllama_from_pretrained(
102
+ source_model_path=args.source,
103
+ target_path=args.target,
104
+ loop_times=args.loop_times
105
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end_of_text|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ }
16
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
3
+ size 17209920
tokenizer_config.json ADDED
@@ -0,0 +1,2062 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "clean_up_tokenization_spaces": true,
2054
+ "eos_token": "<|end_of_text|>",
2055
+ "extra_special_tokens": {},
2056
+ "model_input_names": [
2057
+ "input_ids",
2058
+ "attention_mask"
2059
+ ],
2060
+ "model_max_length": 131072,
2061
+ "tokenizer_class": "PreTrainedTokenizerFast"
2062
+ }