Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- Code
|
5 |
+
- Vulnerability
|
6 |
+
- Detection
|
7 |
+
datasets:
|
8 |
+
- DetectVul/bigvul
|
9 |
+
language:
|
10 |
+
- en
|
11 |
+
base_model:
|
12 |
+
- microsoft/codebert-base
|
13 |
+
license: mit
|
14 |
+
metrics:
|
15 |
+
- accuracy
|
16 |
+
- precision
|
17 |
+
- f1
|
18 |
+
- recall
|
19 |
+
---
|
20 |
+
|
21 |
+
## CodeBERT for Code Vulnerability Detection
|
22 |
+
|
23 |
+
## Model Summary
|
24 |
+
This model is a fine-tuned version of **microsoft/codebert-base**, optimized for detecting vulnerabilities in code. It is trained on the **bigvul** dataset. The model takes in a code snippet and classifies it as either **benign (0)** or **vulnerable (1)**.
|
25 |
+
|
26 |
+
## Model Details
|
27 |
+
|
28 |
+
- **Developed by:** Eun Jung
|
29 |
+
- **Finetuned from:** `microsoft/codebert-base`
|
30 |
+
- **Language(s):** English (for code comments & metadata), C/C++
|
31 |
+
- **License:** MIT
|
32 |
+
- **Task:** Code vulnerability detection
|
33 |
+
- **Dataset Used:** `bigvul`
|
34 |
+
- **Architecture:** Transformer-based sequence classification
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
## How to Get Started with the Model
|
39 |
+
Use the code below to load the model and run inference on a sample code snippet:
|
40 |
+
|
41 |
+
```python
|
42 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
43 |
+
import torch
|
44 |
+
|
45 |
+
# Load the fine-tuned model
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
|
47 |
+
model = AutoModelForSequenceClassification.from_pretrained("eunJ/codebert_vulnerabilty_detector")
|
48 |
+
|
49 |
+
# Sample code snippet
|
50 |
+
code_snippet = '''
|
51 |
+
void process(char *input) {
|
52 |
+
char buffer[50];
|
53 |
+
strcpy(buffer, input); // Potential buffer overflow
|
54 |
+
}
|
55 |
+
'''
|
56 |
+
|
57 |
+
# Tokenize the input
|
58 |
+
inputs = tokenizer(code_snippet, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
|
59 |
+
|
60 |
+
# Run inference
|
61 |
+
with torch.no_grad():
|
62 |
+
outputs = model(**inputs)
|
63 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
64 |
+
predicted_label = torch.argmax(predictions, dim=1).item()
|
65 |
+
|
66 |
+
# Output the result
|
67 |
+
print("Vulnerable Code" if predicted_label == 1 else "Benign Code")
|
68 |
+
```
|
69 |
+
|
70 |
+
## Training Details
|
71 |
+
|
72 |
+
### Training Data
|
73 |
+
- **Dataset:** `Bigvul`
|
74 |
+
- **Classes:** `0 (Benign)`, `1 (Vulnerable)`
|
75 |
+
- **Size:** `21800` Code Snippets
|
76 |
+
|
77 |
+
### Metrics
|
78 |
+
| Metric | Score |
|
79 |
+
|------------|-------------|
|
80 |
+
| **Accuracy** | 99.11% |
|
81 |
+
| **F1 Score** | 91.88% |
|
82 |
+
| **Precision** | 89.57% |
|
83 |
+
| **Recall** | 94.31% |
|