Diffusers
Safetensors
giulio98 commited on
Commit
6af4871
·
verified ·
1 Parent(s): 1934cb8

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -0
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - eurecom-ds/shapes3d
4
+ library_name: diffusers
5
+ pipeline_tag: Conditional Image Generation
6
+ ---
7
+
8
+ ```python
9
+ # !pip install diffusers
10
+ from diffusers import DiffusionPipeline
11
+ import torch
12
+
13
+ from PIL import Image
14
+
15
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
16
+ model_id = "eurecom-ds/scoresdeve-conditional-ema-shapes3d-64"
17
+
18
+ # load model and scheduler
19
+ pipe = DiffusionPipeline.from_pretrained(model_id, trust_remote_code=True)
20
+ pipe.to(device)
21
+
22
+
23
+ # run pipeline in inference (sample random noise and denoise)
24
+ generator = torch.Generator(device=device).manual_seed(46)
25
+ class_labels = torch.tensor([[0, 0, 0, 0, 1, 0], # condition on shape cube
26
+ [0, 0, 0, 0, 2, 0], # condition on shape cylinder
27
+ [0, 0, 0, 0, 3, 0], # condition on shape sphere
28
+ [0, 0, 0, 0, 4, 0], # condition on shape capsule
29
+ [0, 0, 0, 0, 0, 0], # unconditional
30
+ [1, 1, 1, 1, 1, 1], # condition on red floor, object red, orientation right, small scale, shape cube, wall red
31
+ [0, 0, 0, 0, 0, 0], # unconditional
32
+ [0, 0, 0, 0, 0, 0], # uncondtional
33
+ [0, 0, 0, 0, 1, 0], # condition on shape cube
34
+ [0, 0, 0, 0, 1, 0], # condition on shape cube
35
+ [0, 0, 0, 0, 1, 0], # condition on shape cube
36
+ [0, 0, 0, 0, 1, 0], # condition on shape cube
37
+ [0, 0, 0, 0, 1, 0], # condition on shape cube
38
+ [0, 0, 0, 0, 1, 0], # condition on shape cube
39
+ [0, 0, 0, 0, 1, 0], # condition on shape cube
40
+ [0, 0, 0, 0, 1, 0] # condition on shape cube
41
+ ]).to(device=pipe.device)
42
+ image = pipe(
43
+ generator=generator,
44
+ batch_size=16,
45
+ class_labels=class_labels,
46
+ num_inference_steps=1000
47
+ ).images
48
+ width, height = image[0].size
49
+
50
+ # Create a new image with enough space for 2 rows x 8 columns
51
+ grid = Image.new('RGB', (width * 8, height * 2))
52
+
53
+ for index, img in enumerate(image):
54
+ x = index % 8 * width # Column index (0-7) times width of one image
55
+ y = index // 8 * height # Row index (0-1) times height of one image
56
+ grid.paste(img, (x, y))
57
+
58
+ # Save the final grid image
59
+ grid.save("sde_ve_conditional_generated_grid.png")
60
+ ```
61
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62c88e75a5ac2974c0a5c8ea/9hqCBwJe0dO4v9H67ZMMK.png)