File size: 5,656 Bytes
d189cfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "Z97NsWqYepIS"
},
"source": [
"## **Step 1: Setting Up ExecuTorch**\n",
"\n",
"* If using a Google colab notebook then please get a High-RAM instance to run this notebook.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true,
"id": "cAsZThj3dFo7"
},
"outputs": [],
"source": [
"! touch /content/executorch; rm -rf /content/executorch\n",
"! git clone https://github.com/pytorch/executorch ; cd /content/executorch; git submodule sync ; git submodule update --init"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "J58Rbuptspfj"
},
"outputs": [],
"source": [
"import sys\n",
"# This is a workaround for now\n",
"!mkdir -p /usr/lib/python{sys.version_info.major}.{sys.version_info.minor}/site-packages/torchgen/packaged/ATen/native/\n",
"!cp /usr/local/lib/python{sys.version_info.major}.{sys.version_info.minor}/dist-packages/torchgen/packaged/ATen/native/* /usr/lib/python{sys.version_info.major}.{sys.version_info.minor}/site-packages/torchgen/packaged/ATen/native/"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "N1WgIQyqd5ra"
},
"outputs": [],
"source": [
"import sysconfig; lib_path = sysconfig.get_paths()[\"purelib\"]\n",
"! cd /content/executorch; CMAKE_PREFIX_PATH={lib_path} EXECUTORCH_BUILD_XNNPACK=ON bash ./install_executorch.sh"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "xEcuuYbIfE3L"
},
"outputs": [],
"source": [
"!cd /content/executorch; examples/models/llama/install_requirements.sh"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "UX-ZS052fP6D"
},
"source": [
"## **Step 2. Download DeepSeek-R1-Distill-Llama-8B models**"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "tWK81UfzlxLr"
},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "BsL1yxiUfi01"
},
"outputs": [],
"source": [
"!huggingface-cli download deepseek-ai/DeepSeek-R1-Distill-Llama-8B --local-dir /content/models/DeepSeek-R1-Distill-Llama-8B --local-dir-use-symlinks False"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6QE-6XPWr4j9"
},
"source": [
"## **Step 3: Export to ExecuTorch**"
]
},
{
"cell_type": "code",
"source": [
"!pip install torchtune"
],
"metadata": {
"id": "YrQLa1ST-uCP"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"from torchtune.models import convert_weights\n",
"from torchtune.training import FullModelHFCheckpointer\n",
"import torch\n",
"\n",
"# Convert from safetensors to TorchTune. Suppose the model has been downloaded from Hugging Face\n",
"checkpointer = FullModelHFCheckpointer(\n",
" checkpoint_dir='/content/models/DeepSeek-R1-Distill-Llama-8B',\n",
" checkpoint_files=['model-00001-of-000002.safetensors', 'model-00002-of-000002.safetensors'],\n",
" output_dir='/tmp/deepseek-ai/DeepSeek-R1-Distill-Llama-8B/' ,\n",
" model_type='LLAMA3' # or other types that TorchTune supports\n",
")\n",
"\n",
"print(\"loading checkpoint\")\n",
"sd = checkpointer.load_checkpoint()\n",
"\n",
"# Convert from TorchTune to Meta (PyTorch native)\n",
"sd = convert_weights.tune_to_meta(sd['model'])\n",
"\n",
"print(\"saving checkpoint\")\n",
"torch.save(sd, \"/tmp/deepseek-ai/DeepSeek-R1-Distill-Llama-8B/checkpoint.pth\")"
],
"metadata": {
"id": "Zphh3FVu-2Wa"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Download https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct/blob/main/original/params.json and place it in /tmp/params.json"
],
"metadata": {
"id": "UBWLe4Gu_OTK"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true,
"id": "hGkyrU5lnNop"
},
"outputs": [],
"source": [
"!cd /content/executorch; python -m examples.models.llama.export_llama \\\n",
" --checkpoint /tmp/deepseek-ai/DeepSeek-R1-Distill-Llama-8B/checkpoint.pth \\\n",
"\t-p /tmp/params.json \\\n",
"\t-kv \\\n",
"\t--use_sdpa_with_kv_cache \\\n",
"\t-X \\\n",
"\t-qmode 8da4w \\\n",
"\t--group_size 128 \\\n",
"\t-d fp16 \\\n",
"\t--metadata '{\"get_bos_id\":128000, \"get_eos_ids\":[128009, 128001]}' \\\n",
"\t--embedding-quantize 4,32 \\\n",
"\t--output_name=\"DeepSeek-R1-Distill-Llama-8B.pte\""
]
}
],
"metadata": {
"colab": {
"provenance": [],
"machine_shape": "hm"
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
} |