Acrobot-v1 / config.json
fallo2's picture
Acrobot-v1 - erster (schlechter) Versuch
a032ede verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a2c62e77760>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a2c62e777f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a2c62e77880>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a2c62e77910>", "_build": "<function ActorCriticPolicy._build at 0x7a2c62e779a0>", "forward": "<function ActorCriticPolicy.forward at 0x7a2c62e77a30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a2c62e77ac0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a2c62e77b50>", "_predict": "<function ActorCriticPolicy._predict at 0x7a2c62e77be0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a2c62e77c70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a2c62e77d00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a2c62e77d90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a2c62e1d580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1731776890927993344, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAQAAAAAAANeIFT93yU+/22hAP87cKD+g3Ku/SOwuQPSReL7XV3g/v5sLvwiVVr+ah2m/BG43wPOzej8hO08+62dsP2xzxD7RCyNAk7aCwHalXz8lJfk+u/1/v+taCLyvRY3AD5y6P4aEbT/3Ar8+DsPEPlxXbD/ptXhA/NfJwLIzxbwC7X8/3IVlPw3D4r6iA0NA9CytwLeZ2j2aiX4/Sn4fPi7gfL8tTwHABLu9vxRqTz8KDRY/WYhNPlHKej+zD4FASgSVwJjNIz8VvEQ/2JYqP2DhPj9SKkVAz9GvwLNXRT58M3s/HPSbvtLVc78Ek0O+Cfi3v0UIm75o+3O/Z6JCvxRLJj/j6GfAEB0YvlVGbb8qN8C+bbHKPT2+fj8KwGc/9bh/wKIwez+3kUW+19hSPxowET+3HeG9j/DSPnmUez+Udj2+jRBQP94lFT8oJzO+3XPtPr0Fsr3wB3+/7IRpP6rO0T4nw8y/lpGVQEnYPz/7gCk/X2NTvx5mEL/6fV/AxbdEQJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsGhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFEAAAAAAACMAWyUS0WMAXSUR0CP3B+AmReUdX2UKGgGR8BYQAAAAAAAaAdLYmgIR0CP3BTjvNNbdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0CP3C1+AmRedX2UKGgGR8BTwAAAAAAAaAdLUGgIR0CP3GatLcsUdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0CP3NaTOgQIdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0CP3MLYwqRVdX2UKGgGR8BYwAAAAAAAaAdLZGgIR0CP3OSi/O+qdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0CP3Slgtvn9dX2UKGgGR8BTQAAAAAAAaAdLTmgIR0CP3TKr7wazdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0CP3SjWTX8PdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0CP3Uk690zTdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CP3awUxmCidX2UKGgGR8BTQAAAAAAAaAdLTmgIR0CP3ZBF/hESdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0CP3a5vtMPCdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CP3gqaw2VFdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0CP3jmozeoDdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0CP3munMt9QdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0CP3pDQ7cO9dX2UKGgGR8BVAAAAAAAAaAdLVWgIR0CP3oA9V3lkdX2UKGgGR8BWwAAAAAAAaAdLXGgIR0CP3qK8+RozdX2UKGgGR8BSwAAAAAAAaAdLTGgIR0CP3tHzYmLMdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0CP3uxRl6JJdX2UKGgGR8BSQAAAAAAAaAdLSmgIR0CP3uUgSvkjdX2UKGgGR8BQAAAAAAAAaAdLQWgIR0CP3wsQNCqqdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CP3y+C9RJmdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CP3ydf9gnddX2UKGgGR8BVQAAAAAAAaAdLVmgIR0CP335SFXaKdX2UKGgGR8BSwAAAAAAAaAdLTGgIR0CP35/z8P4EdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CP36gh8pkPdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0CP38+0w8GLdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CP4AFA3T/idX2UKGgGR8BQAAAAAAAAaAdLQWgIR0CP4Dd5Y5ktdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0CP4ISQo1DTdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0CP4K7JW/8EdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0CP4NC6Ymb9dX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CP4Nh86V+rdX2UKGgGR8BYwAAAAAAAaAdLZGgIR0CP4OxDb8FZdX2UKGgGR8BSwAAAAAAAaAdLTGgIR0CP4OrXlKbsdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0CP4P8stkFwdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0CP4Qa1kUbldX2UKGgGR8BVAAAAAAAAaAdLVWgIR0CP4W0cfeUIdX2UKGgGR8BWAAAAAAAAaAdLWWgIR0CP4WR2bG3ndX2UKGgGR8BTwAAAAAAAaAdLUGgIR0CP4ZdWyTpxdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CP4bGb1AZ9dX2UKGgGR8BTwAAAAAAAaAdLUGgIR0CP4ejwhGH6dX2UKGgGR8BUAAAAAAAAaAdLUWgIR0CP4cf0VafSdX2UKGgGR8BVwAAAAAAAaAdLWGgIR0CP4e4YJmdzdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CP4nA1vVEvdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0CP4rWvKU3XdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0CP4siFCb+cdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0CP4wAR02cbdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0CP4vdonKGMdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CP4uxrSE13dX2UKGgGR8BTgAAAAAAAaAdLT2gIR0CP4vj/dZaFdX2UKGgGR8BZQAAAAAAAaAdLZmgIR0CP4uQp4KQadX2UKGgGR8BWgAAAAAAAaAdLW2gIR0CP4xAbADaHdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CP41CiRGMGdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0CP48GD+R5kdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0CP47Y5DJEIdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CP47h2nsLOdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0CP4+uoxYaHdX2UKGgGR8BSwAAAAAAAaAdLTGgIR0CP5BJ4jbBXdX2UKGgGR8BXgAAAAAAAaAdLX2gIR0CP5IgzP8htdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0CP5MiiZfD2dX2UKGgGR8BRgAAAAAAAaAdLR2gIR0CP5K5QxesxdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CP5QcTakAQdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CP5PUoa1kUdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0CP5TyTY/VzdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0CP5UhY/3WXdX2UKGgGR8BVwAAAAAAAaAdLWGgIR0CP5XHxz7uVdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0CP5YtthuwYdX2UKGgGR8BWwAAAAAAAaAdLXGgIR0CP5X/n4fwJdX2UKGgGR8BZgAAAAAAAaAdLZ2gIR0CP5aJ0nw5OdX2UKGgGR8BSQAAAAAAAaAdLSmgIR0CP5ckv9LpSdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CP5bZdOZb7dX2UKGgGR8BTAAAAAAAAaAdLTWgIR0CP5dNwBHTadX2UKGgGR8BRgAAAAAAAaAdLR2gIR0CP5eBI4EOidX2UKGgGR8BSwAAAAAAAaAdLTGgIR0CP5if/3nIRdX2UKGgGR8BQAAAAAAAAaAdLQWgIR0CP5lp0wJw9dX2UKGgGR8BSQAAAAAAAaAdLSmgIR0CP5u7rcCYDdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0CP5ve40/GEdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CP5yj+rELqdX2UKGgGR8BQAAAAAAAAaAdLQWgIR0CP5z6ol2NedX2UKGgGR8BVgAAAAAAAaAdLV2gIR0CP55mZmZmadX2UKGgGR8BUAAAAAAAAaAdLUWgIR0CP5/5aePJadX2UKGgGR8BTAAAAAAAAaAdLTWgIR0CP6BpblijMdX2UKGgGR8BWAAAAAAAAaAdLWWgIR0CP6EbADaGpdX2UKGgGR8BaAAAAAAAAaAdLaWgIR0CP6GosI3R5dX2UKGgGR8BWgAAAAAAAaAdLW2gIR0CP6G4OtnwodX2UKGgGR8BVgAAAAAAAaAdLV2gIR0CP6H1wHZ9NdX2UKGgGR8BWgAAAAAAAaAdLW2gIR0CP6JCBwuM/dX2UKGgGR8BVAAAAAAAAaAdLVWgIR0CP6HdWyTpxdX2UKGgGR8BSQAAAAAAAaAdLSmgIR0CP6J+uvECOdX2UKGgGR8BaAAAAAAAAaAdLaWgIR0CP6J7laKUFdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0CP6I2bXpW4dX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CP6SFDfFaTdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0CP6XQTmGM5dX2UKGgGR8BTQAAAAAAAaAdLTmgIR0CP6Xnq3VkMdX2UKGgGR8BQAAAAAAAAaAdLQWgIR0CP6gLuQZGbdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0CP6gE7nxJ/dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVNAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgYAAAAAAAAAAQEBAQEBlGgVSwaFlGgZdJRSlIwGX3NoYXBllEsGhZSMA2xvd5RoESiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/2w9JwdYx4sGUaAtLBoWUaBl0lFKUjARoaWdolGgRKJYYAAAAAAAAAAAAgD8AAIA/AACAPwAAgD/bD0lB1jHiQZRoC0sGhZRoGXSUUpSMCGxvd19yZXBylIxDWyAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgLTEyLjU2NjM3MSAtMjguMjc0MzM0XZSMCWhpZ2hfcmVwcpSMPVsgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgMTIuNTY2MzcxIDI4LjI3NDMzNF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_shape": [6], "low": "[ -1. -1. -1. -1. -12.566371 -28.274334]", "high": "[ 1. 1. 1. 1. 12.566371 28.274334]", "low_repr": "[ -1. -1. -1. -1. -12.566371 -28.274334]", "high_repr": "[ 1. 1. 1. 1. 12.566371 28.274334]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "3", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}