CartPole-v1 - erster (schlechter) Versuch
Browse files- CartPole-v1.zip +3 -0
- CartPole-v1/_stable_baselines3_version +1 -0
- CartPole-v1/data +99 -0
- CartPole-v1/policy.optimizer.pth +3 -0
- CartPole-v1/policy.pth +3 -0
- CartPole-v1/pytorch_variables.pth +3 -0
- CartPole-v1/system_info.txt +9 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
CartPole-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d34285a9f712369db6b0bf10d3238a564da16a8d9d2c045c6c946aeb1052e5a2
|
3 |
+
size 139550
|
CartPole-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
CartPole-v1/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x78af0c95d630>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78af0c95d6c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78af0c95d750>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78af0c95d7e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x78af0c95d870>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x78af0c95d900>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78af0c95d990>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78af0c95da20>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x78af0c95dab0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78af0c95db40>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78af0c95dbd0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78af0c95dc60>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x78af0c90acc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 32768,
|
25 |
+
"_total_timesteps": 100,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1731775868621210704,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAJS3Nz2pzxc/665fva2Adb+NQNA8OX/BPqNthb3MOhu/+x9Nva9q2b6wXQA+G7M7P9a+WrocfmW+Te4qvVL5VT7muBs9+THOup9f97s0m0C84MzCuvX2MD4myhK9BZiJvv4XGbzAlqK8RLtdveJLgL0+Ok09lZ9SvvylJrwjB4s+zuNNvSjQGr8Aai8+b8CPP8Ngyj12AEY/Ah0ivpXGsr/QBR08P7QpPnKKQz3yF4G+O45YvdHpOD6zThQ+QwzoPf8qPT29tdM+wbJtvRszB79Z/9i9Y794vYmmLT5nPz0/m4zou83dSL7aNQ09WHGUPhSu172y06i/DRAaPpuLB0CUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLBIaUjAFDlHSUUpQu"
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAABAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -326.68,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCoAAAAAAACMAWyUSw2MAXSUR0A1gUMoc7yQdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0A1gXjlxOtXdX2UKGgGR0A5AAAAAAAAaAdLGWgIR0A1gWoFV1fWdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0A1gfQrtmcwdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1gXVbzK9xdX2UKGgGR0BEAAAAAAAAaAdLKGgIR0A1gwGGEf1ZdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0A1go/RmbsodX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1hCKrJbMYdX2UKGgGR0BCAAAAAAAAaAdLJGgIR0A1hb349HMEdX2UKGgGR0A1AAAAAAAAaAdLFWgIR0A1hTsY2sJZdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0A1hnctXgccdX2UKGgGR0AiAAAAAAAAaAdLCWgIR0A1hThHbypadX2UKGgGR0AsAAAAAAAAaAdLDmgIR0A1hgHNX5nEdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A1hi+cpb2UdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0A1h45tFa0QdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1iNhE0BOpdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A1iFkxyn1ndX2UKGgGR0AoAAAAAAAAaAdLDGgIR0A1h53Tuv2XdX2UKGgGR0BBgAAAAAAAaAdLI2gIR0A1h+wTufEodX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1iRf4REncdX2UKGgGR0A4AAAAAAAAaAdLGGgIR0A1i15B1LamdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1iph4MWoFdX2UKGgGR0BDgAAAAAAAaAdLJ2gIR0A1jIEKVpsXdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0A1jGFzuF6BdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0A1iyM1jy4GdX2UKGgGR0A1AAAAAAAAaAdLFWgIR0A1jo/zJ6ppdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0A1jrhzeXRgdX2UKGgGR0A1AAAAAAAAaAdLFWgIR0A1j0k4WDYidX2UKGgGR0AxAAAAAAAAaAdLEWgIR0A1j3jMmnfmdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0A1jt/WlMyrdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0A1kONo8IRidX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1kwOe8PFvdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1kj9XLeQ/dX2UKGgGR0A2AAAAAAAAaAdLFmgIR0A1kUHIIWxhdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0A1lANG3F1kdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0A1kqMm4RVZdX2UKGgGR0A5AAAAAAAAaAdLGWgIR0A1k69TP0I1dX2UKGgGR0A8AAAAAAAAaAdLHGgIR0A1k3Mpw0fpdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0A1lQMx46fbdX2UKGgGR0A2AAAAAAAAaAdLFmgIR0A1ld/rjYI0dX2UKGgGR0BBgAAAAAAAaAdLI2gIR0A1lQNkOI69dX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A1loGIKtxNdX2UKGgGR0A4AAAAAAAAaAdLGGgIR0A1lWLP2PDHdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1lzbN8ma6dX2UKGgGR0A2AAAAAAAAaAdLFmgIR0A1mCIk7fYSdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0A1l2VVxS5zdX2UKGgGR0A2AAAAAAAAaAdLFmgIR0A1mEJSiudPdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0A1me/Yao/BdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0A1mO+qR2bHdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0A1mnzg/C66dX2UKGgGR0AiAAAAAAAAaAdLCWgIR0A1mvMr3CbddX2UKGgGR0BCAAAAAAAAaAdLJGgIR0A1m6ciGFi8dX2UKGgGR0A7AAAAAAAAaAdLG2gIR0A1nJul41P4dX2UKGgGR0AxAAAAAAAAaAdLEWgIR0A1nHuJDVpcdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1ngjhUBGQdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0A1np1RtP56dX2UKGgGR0AxAAAAAAAAaAdLEWgIR0A1nn8sMAmzdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1n6shgVoIdX2UKGgGR0BBAAAAAAAAaAdLImgIR0A1oUzbeuV5dX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1n8oQWepXdX2UKGgGR0A/AAAAAAAAaAdLH2gIR0A1n6nivPkadX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1ogEU0vXcdX2UKGgGR0A1AAAAAAAAaAdLFWgIR0A1obFCLMs6dX2UKGgGR0A2AAAAAAAAaAdLFmgIR0A1ox6fJ3gUdX2UKGgGR0BAAAAAAAAAaAdLIGgIR0A1ome18b71dX2UKGgGR0A1AAAAAAAAaAdLFWgIR0A1pF1B+nZTdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0A1pIlMRHwxdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0A1o63iJfpmdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0A1peDnNgSfdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0A1peZ5Rjz7dX2UKGgGR0AoAAAAAAAAaAdLDGgIR0A1pKjSG8EndX2UKGgGR0BEAAAAAAAAaAdLKGgIR0A1pp+c6NlzdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A1peNT987ZdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0A1paYNRWLhdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0A1qVlPJq7AdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A1qLYf4h2XdX2UKGgGR0A7AAAAAAAAaAdLG2gIR0A1qUMoc7yQdX2UKGgGR0A5AAAAAAAAaAdLGWgIR0A1qQXyiEg4dX2UKGgGR0A0AAAAAAAAaAdLFGgIR0A1qlPJq7AddX2UKGgGR0AsAAAAAAAAaAdLDmgIR0A1qjvNNahYdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0A1q1FH8TBZdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0A1q1XNke6qdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0A1rOrhisnzdX2UKGgGR0AiAAAAAAAAaAdLCWgIR0A1rIuoP07KdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0A1q69kBjnWdX2UKGgGR0BCAAAAAAAAaAdLJGgIR0A1q44p+c6OdX2UKGgGR0BBAAAAAAAAaAdLImgIR0A1rL0Bfa6CdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A1rUeuFHrhdX2UKGgGR0A5AAAAAAAAaAdLGWgIR0A1rOtW+49YdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A1rnxJ/XoUdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0A1rsmOU+s6dX2UKGgGR0A4AAAAAAAAaAdLGGgIR0A1r/2TPjXGdX2UKGgGR0A2AAAAAAAAaAdLFmgIR0A1ruM+/xlQdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0A1sRdQfp2VdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1sPoFFDv3dX2UKGgGR0AoAAAAAAAAaAdLDGgIR0A1sGNaQmu1dX2UKGgGR0AwAAAAAAAAaAdLEGgIR0A1shNM495hdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0A1sLehwl0HdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A1sqgRK6FudX2UKGgGR0AuAAAAAAAAaAdLD2gIR0A1szSThYNidWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 10,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True]",
|
60 |
+
"bounded_above": "[ True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
4
|
63 |
+
],
|
64 |
+
"low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
|
65 |
+
"high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
|
66 |
+
"low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
|
67 |
+
"high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "2",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
CartPole-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e9316d2a74afaf0ce05020cf253c8be340c81c6f2d5e5463c60f2ff31409782
|
3 |
+
size 83242
|
CartPole-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e0a8a654fbbff85e7647742940e7757acc5f941f6af10ce388f947c8005edb2
|
3 |
+
size 41202
|
CartPole-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
CartPole-v1/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- CartPole-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: CartPole-v1
|
16 |
+
type: CartPole-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 345.60 +/- 80.53
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **CartPole-v1**
|
25 |
+
This is a trained model of a **PPO** agent playing **CartPole-v1**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78af0c95d630>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78af0c95d6c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78af0c95d750>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78af0c95d7e0>", "_build": "<function ActorCriticPolicy._build at 0x78af0c95d870>", "forward": "<function ActorCriticPolicy.forward at 0x78af0c95d900>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78af0c95d990>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78af0c95da20>", "_predict": "<function ActorCriticPolicy._predict at 0x78af0c95dab0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78af0c95db40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78af0c95dbd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78af0c95dc60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78af0c90acc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 32768, "_total_timesteps": 100, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1731775868621210704, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAJS3Nz2pzxc/665fva2Adb+NQNA8OX/BPqNthb3MOhu/+x9Nva9q2b6wXQA+G7M7P9a+WrocfmW+Te4qvVL5VT7muBs9+THOup9f97s0m0C84MzCuvX2MD4myhK9BZiJvv4XGbzAlqK8RLtdveJLgL0+Ok09lZ9SvvylJrwjB4s+zuNNvSjQGr8Aai8+b8CPP8Ngyj12AEY/Ah0ivpXGsr/QBR08P7QpPnKKQz3yF4G+O45YvdHpOD6zThQ+QwzoPf8qPT29tdM+wbJtvRszB79Z/9i9Y794vYmmLT5nPz0/m4zou83dSL7aNQ09WHGUPhSu172y06i/DRAaPpuLB0CUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLBIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAABAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -326.68, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCoAAAAAAACMAWyUSw2MAXSUR0A1gUMoc7yQdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0A1gXjlxOtXdX2UKGgGR0A5AAAAAAAAaAdLGWgIR0A1gWoFV1fWdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0A1gfQrtmcwdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1gXVbzK9xdX2UKGgGR0BEAAAAAAAAaAdLKGgIR0A1gwGGEf1ZdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0A1go/RmbsodX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1hCKrJbMYdX2UKGgGR0BCAAAAAAAAaAdLJGgIR0A1hb349HMEdX2UKGgGR0A1AAAAAAAAaAdLFWgIR0A1hTsY2sJZdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0A1hnctXgccdX2UKGgGR0AiAAAAAAAAaAdLCWgIR0A1hThHbypadX2UKGgGR0AsAAAAAAAAaAdLDmgIR0A1hgHNX5nEdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A1hi+cpb2UdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0A1h45tFa0QdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1iNhE0BOpdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A1iFkxyn1ndX2UKGgGR0AoAAAAAAAAaAdLDGgIR0A1h53Tuv2XdX2UKGgGR0BBgAAAAAAAaAdLI2gIR0A1h+wTufEodX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1iRf4REncdX2UKGgGR0A4AAAAAAAAaAdLGGgIR0A1i15B1LamdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1iph4MWoFdX2UKGgGR0BDgAAAAAAAaAdLJ2gIR0A1jIEKVpsXdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0A1jGFzuF6BdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0A1iyM1jy4GdX2UKGgGR0A1AAAAAAAAaAdLFWgIR0A1jo/zJ6ppdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0A1jrhzeXRgdX2UKGgGR0A1AAAAAAAAaAdLFWgIR0A1j0k4WDYidX2UKGgGR0AxAAAAAAAAaAdLEWgIR0A1j3jMmnfmdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0A1jt/WlMyrdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0A1kONo8IRidX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1kwOe8PFvdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1kj9XLeQ/dX2UKGgGR0A2AAAAAAAAaAdLFmgIR0A1kUHIIWxhdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0A1lANG3F1kdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0A1kqMm4RVZdX2UKGgGR0A5AAAAAAAAaAdLGWgIR0A1k69TP0I1dX2UKGgGR0A8AAAAAAAAaAdLHGgIR0A1k3Mpw0fpdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0A1lQMx46fbdX2UKGgGR0A2AAAAAAAAaAdLFmgIR0A1ld/rjYI0dX2UKGgGR0BBgAAAAAAAaAdLI2gIR0A1lQNkOI69dX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A1loGIKtxNdX2UKGgGR0A4AAAAAAAAaAdLGGgIR0A1lWLP2PDHdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1lzbN8ma6dX2UKGgGR0A2AAAAAAAAaAdLFmgIR0A1mCIk7fYSdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0A1l2VVxS5zdX2UKGgGR0A2AAAAAAAAaAdLFmgIR0A1mEJSiudPdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0A1me/Yao/BdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0A1mO+qR2bHdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0A1mnzg/C66dX2UKGgGR0AiAAAAAAAAaAdLCWgIR0A1mvMr3CbddX2UKGgGR0BCAAAAAAAAaAdLJGgIR0A1m6ciGFi8dX2UKGgGR0A7AAAAAAAAaAdLG2gIR0A1nJul41P4dX2UKGgGR0AxAAAAAAAAaAdLEWgIR0A1nHuJDVpcdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1ngjhUBGQdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0A1np1RtP56dX2UKGgGR0AxAAAAAAAAaAdLEWgIR0A1nn8sMAmzdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1n6shgVoIdX2UKGgGR0BBAAAAAAAAaAdLImgIR0A1oUzbeuV5dX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1n8oQWepXdX2UKGgGR0A/AAAAAAAAaAdLH2gIR0A1n6nivPkadX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1ogEU0vXcdX2UKGgGR0A1AAAAAAAAaAdLFWgIR0A1obFCLMs6dX2UKGgGR0A2AAAAAAAAaAdLFmgIR0A1ox6fJ3gUdX2UKGgGR0BAAAAAAAAAaAdLIGgIR0A1ome18b71dX2UKGgGR0A1AAAAAAAAaAdLFWgIR0A1pF1B+nZTdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0A1pIlMRHwxdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0A1o63iJfpmdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0A1peDnNgSfdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0A1peZ5Rjz7dX2UKGgGR0AoAAAAAAAAaAdLDGgIR0A1pKjSG8EndX2UKGgGR0BEAAAAAAAAaAdLKGgIR0A1pp+c6NlzdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A1peNT987ZdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0A1paYNRWLhdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0A1qVlPJq7AdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A1qLYf4h2XdX2UKGgGR0A7AAAAAAAAaAdLG2gIR0A1qUMoc7yQdX2UKGgGR0A5AAAAAAAAaAdLGWgIR0A1qQXyiEg4dX2UKGgGR0A0AAAAAAAAaAdLFGgIR0A1qlPJq7AddX2UKGgGR0AsAAAAAAAAaAdLDmgIR0A1qjvNNahYdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0A1q1FH8TBZdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0A1q1XNke6qdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0A1rOrhisnzdX2UKGgGR0AiAAAAAAAAaAdLCWgIR0A1rIuoP07KdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0A1q69kBjnWdX2UKGgGR0BCAAAAAAAAaAdLJGgIR0A1q44p+c6OdX2UKGgGR0BBAAAAAAAAaAdLImgIR0A1rL0Bfa6CdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A1rUeuFHrhdX2UKGgGR0A5AAAAAAAAaAdLGWgIR0A1rOtW+49YdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A1rnxJ/XoUdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0A1rsmOU+s6dX2UKGgGR0A4AAAAAAAAaAdLGGgIR0A1r/2TPjXGdX2UKGgGR0A2AAAAAAAAaAdLFmgIR0A1ruM+/xlQdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0A1sRdQfp2VdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0A1sPoFFDv3dX2UKGgGR0AoAAAAAAAAaAdLDGgIR0A1sGNaQmu1dX2UKGgGR0AwAAAAAAAAaAdLEGgIR0A1shNM495hdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0A1sLehwl0HdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A1sqgRK6FudX2UKGgGR0AuAAAAAAAAaAdLD2gIR0A1szSThYNidWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "2", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (64.3 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 345.6, "std_reward": 80.52850427022719, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-11-16T16:52:26.446315"}
|