|
import math |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from torch.autograd import Variable |
|
from graph import Graph |
|
import pytorch_lightning as pl |
|
from torchmetrics.classification import MulticlassAccuracy |
|
import torch.optim as optim |
|
|
|
def import_class(name): |
|
components = name.split('.') |
|
mod = __import__(components[0]) |
|
for comp in components[1:]: |
|
mod = getattr(mod, comp) |
|
return mod |
|
|
|
|
|
def conv_branch_init(conv, branches): |
|
weight = conv.weight |
|
n = weight.size(0) |
|
k1 = weight.size(1) |
|
k2 = weight.size(2) |
|
nn.init.normal_(weight, 0, math.sqrt(2. / (n * k1 * k2 * branches))) |
|
nn.init.constant_(conv.bias, 0) |
|
|
|
|
|
def conv_init(conv): |
|
nn.init.kaiming_normal_(conv.weight, mode='fan_out') |
|
nn.init.constant_(conv.bias, 0) |
|
|
|
|
|
def bn_init(bn, scale): |
|
nn.init.constant_(bn.weight, scale) |
|
nn.init.constant_(bn.bias, 0) |
|
|
|
|
|
class unit_tcn(nn.Module): |
|
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1): |
|
super(unit_tcn, self).__init__() |
|
pad = int((kernel_size - 1) / 2) |
|
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=(kernel_size, 1), padding=(pad, 0), |
|
stride=(stride, 1)) |
|
|
|
self.bn = nn.BatchNorm2d(out_channels) |
|
self.relu = nn.ReLU() |
|
conv_init(self.conv) |
|
bn_init(self.bn, 1) |
|
|
|
def forward(self, x): |
|
x = self.bn(self.conv(x)) |
|
return x |
|
|
|
|
|
class unit_gcn(nn.Module): |
|
def __init__(self, in_channels, out_channels, A, coff_embedding=4, num_subset=3): |
|
super(unit_gcn, self).__init__() |
|
inter_channels = out_channels // coff_embedding |
|
self.inter_c = inter_channels |
|
self.PA = nn.Parameter(torch.from_numpy(A.astype(np.float32))) |
|
nn.init.constant_(self.PA, 1e-6) |
|
self.A = Variable(torch.from_numpy(A.astype(np.float32)), requires_grad=False) |
|
self.num_subset = num_subset |
|
|
|
self.conv_a = nn.ModuleList() |
|
self.conv_b = nn.ModuleList() |
|
self.conv_d = nn.ModuleList() |
|
for i in range(self.num_subset): |
|
self.conv_a.append(nn.Conv2d(in_channels, inter_channels, 1)) |
|
self.conv_b.append(nn.Conv2d(in_channels, inter_channels, 1)) |
|
self.conv_d.append(nn.Conv2d(in_channels, out_channels, 1)) |
|
|
|
if in_channels != out_channels: |
|
self.down = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels, 1), |
|
nn.BatchNorm2d(out_channels) |
|
) |
|
else: |
|
self.down = lambda x: x |
|
|
|
self.bn = nn.BatchNorm2d(out_channels) |
|
self.soft = nn.Softmax(-2) |
|
self.relu = nn.ReLU() |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
conv_init(m) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
bn_init(m, 1) |
|
bn_init(self.bn, 1e-6) |
|
for i in range(self.num_subset): |
|
conv_branch_init(self.conv_d[i], self.num_subset) |
|
|
|
def forward(self, x): |
|
N, C, T, V = x.size() |
|
A = self.A.cuda(x.get_device()) |
|
A = A + self.PA |
|
|
|
y = None |
|
for i in range(self.num_subset): |
|
A1 = self.conv_a[i](x).permute(0, 3, 1, 2).contiguous().view(N, V, self.inter_c * T) |
|
A2 = self.conv_b[i](x).view(N, self.inter_c * T, V) |
|
A1 = self.soft(torch.matmul(A1, A2) / A1.size(-1)) |
|
A1 = A1 + A[i] |
|
A2 = x.view(N, C * T, V) |
|
z = self.conv_d[i](torch.matmul(A2, A1).view(N, C, T, V)) |
|
y = z + y if y is not None else z |
|
|
|
y = self.bn(y) |
|
y += self.down(x) |
|
return self.relu(y) |
|
|
|
|
|
class TCN_GCN_unit(nn.Module): |
|
def __init__(self, in_channels, out_channels, A, stride=1, residual=True): |
|
super(TCN_GCN_unit, self).__init__() |
|
self.gcn1 = unit_gcn(in_channels, out_channels, A) |
|
self.tcn1 = unit_tcn(out_channels, out_channels, stride=stride) |
|
self.relu = nn.ReLU() |
|
if not residual: |
|
self.residual = lambda x: 0 |
|
|
|
elif (in_channels == out_channels) and (stride == 1): |
|
self.residual = lambda x: x |
|
|
|
else: |
|
self.residual = unit_tcn(in_channels, out_channels, kernel_size=1, stride=stride) |
|
|
|
def forward(self, x): |
|
x = self.tcn1(self.gcn1(x)) + self.residual(x) |
|
return self.relu(x) |
|
|
|
|
|
class Model(pl.LightningModule): |
|
def __init__(self, num_class=60, num_point=25, num_person=2, graph=None, graph_args=dict(), in_channels=3, |
|
learning_rate = 1e-4, weight_decay = 1e-4): |
|
super(Model, self).__init__() |
|
|
|
|
|
|
|
|
|
|
|
self.graph = Graph(**graph_args) |
|
|
|
A = self.graph.A |
|
|
|
self.data_bn = nn.BatchNorm1d(num_person * in_channels * num_point) |
|
|
|
self.l1 = TCN_GCN_unit(in_channels, 64, A, residual=False) |
|
self.l2 = TCN_GCN_unit(64, 64, A) |
|
self.l3 = TCN_GCN_unit(64, 64, A) |
|
self.l4 = TCN_GCN_unit(64, 64, A) |
|
self.l5 = TCN_GCN_unit(64, 128, A, stride=2) |
|
self.l6 = TCN_GCN_unit(128, 128, A) |
|
self.l7 = TCN_GCN_unit(128, 128, A) |
|
self.l8 = TCN_GCN_unit(128, 256, A, stride=2) |
|
self.l9 = TCN_GCN_unit(256, 256, A) |
|
self.l10 = TCN_GCN_unit(256, 256, A) |
|
|
|
self.fc = nn.Linear(256, num_class) |
|
nn.init.normal_(self.fc.weight, 0, math.sqrt(2. / num_class)) |
|
bn_init(self.data_bn, 1) |
|
|
|
self.loss = nn.CrossEntropyLoss() |
|
self.metric = MulticlassAccuracy(num_class) |
|
self.learning_rate = learning_rate |
|
self.weight_decay = weight_decay |
|
self.validation_step_loss_outputs = [] |
|
self.validation_step_acc_outputs = [] |
|
|
|
self.save_hyperparameters() |
|
|
|
def forward(self, x): |
|
|
|
N, C, T, V, M = x.size() |
|
|
|
|
|
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T) |
|
|
|
x = self.data_bn(x) |
|
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V) |
|
|
|
x = self.l1(x) |
|
x = self.l2(x) |
|
x = self.l3(x) |
|
x = self.l4(x) |
|
x = self.l5(x) |
|
x = self.l6(x) |
|
x = self.l7(x) |
|
x = self.l8(x) |
|
x = self.l9(x) |
|
x = self.l10(x) |
|
|
|
|
|
c_new = x.size(1) |
|
x = x.view(N, M, c_new, -1) |
|
x = x.mean(3).mean(1) |
|
|
|
return self.fc(x) |
|
|
|
def training_step(self, batch, batch_idx): |
|
inputs, targets = batch |
|
outputs = self(inputs) |
|
y_pred_class = torch.argmax(torch.softmax(outputs, dim=1), dim=1) |
|
|
|
|
|
train_accuracy = self.metric(y_pred_class, targets) |
|
loss = self.loss(outputs, targets) |
|
self.log('train_accuracy', train_accuracy, prog_bar=True, on_epoch=True) |
|
self.log('train_loss', loss, prog_bar=True, on_epoch=True) |
|
|
|
return loss |
|
|
|
def validation_step(self, batch, batch_idx): |
|
inputs, targets = batch |
|
outputs = self.forward(inputs) |
|
y_pred_class = torch.argmax(torch.softmax(outputs, dim=1), dim=1) |
|
valid_accuracy = self.metric(y_pred_class, targets) |
|
loss = self.loss(outputs, targets) |
|
self.log('valid_accuracy', valid_accuracy, prog_bar=True, on_epoch=True) |
|
self.log('valid_loss', loss, prog_bar=True, on_epoch=True) |
|
self.validation_step_loss_outputs.append(loss) |
|
self.validation_step_acc_outputs.append(valid_accuracy) |
|
return {"valid_loss" : loss, "valid_accuracy" : valid_accuracy} |
|
|
|
def on_validation_epoch_end(self): |
|
|
|
|
|
|
|
|
|
avg_loss = torch.stack(self.validation_step_loss_outputs).mean() |
|
avg_acc = torch.stack(self.validation_step_acc_outputs).mean() |
|
self.log("ptl/val_loss", avg_loss) |
|
self.log("ptl/val_accuracy", avg_acc) |
|
self.validation_step_loss_outputs.clear() |
|
self.validation_step_acc_outputs.clear() |
|
|
|
def test_step(self, batch, batch_idx): |
|
inputs, targets = batch |
|
outputs = self.forward(inputs) |
|
y_pred_class = torch.argmax(torch.softmax(outputs, dim=1), dim=1) |
|
print("Targets : ", targets) |
|
print("Preds : ", y_pred_class) |
|
test_accuracy = self.metric(y_pred_class, targets) |
|
loss = self.loss(outputs, targets) |
|
self.log('test_accuracy', test_accuracy, prog_bar=True, on_epoch=True) |
|
self.log('test_loss', loss, prog_bar=True, on_epoch=True) |
|
return {"test_loss" : loss, "test_accuracy" : test_accuracy} |
|
|
|
def configure_optimizers(self): |
|
params = self.parameters() |
|
optimizer = optim.Adam(params=params, lr = self.learning_rate, weight_decay = self.weight_decay) |
|
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max') |
|
return {"optimizer": optimizer, |
|
"lr_scheduler": {"scheduler": scheduler, "monitor": "valid_accuracy"} |
|
} |
|
|
|
|
|
def predict_step(self, batch, batch_idx): |
|
return self(batch) |
|
|
|
if __name__ == "__main__": |
|
import os |
|
from torchinfo import summary |
|
print(os.getcwd()) |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model = Model(num_class=20, num_point=25, num_person=1, |
|
graph_args={"layout":"mediapipe", "strategy":"spatial"}, in_channels=2).to(device) |
|
|
|
|
|
summary(model) |
|
x = torch.randn((1, 2, 80, 25, 1)).to(device) |
|
y = model(x) |
|
print(y.shape) |
|
|