Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- best_summarization_model.h5 +3 -0
- input_tokenizer.pickle +3 -0
- output_tokenizer.pickle +3 -0
- summarizer.py +253 -0
- text_processing.py +43 -0
- text_summarizer_model.keras +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
text_summarizer_model.keras filter=lfs diff=lfs merge=lfs -text
|
best_summarization_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:574447551ed9579846966f5f96b22ce8f1837f5f8f1b082f7864e95d44ccb167
|
3 |
+
size 52147136
|
input_tokenizer.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b12569dde48e72535933a34206633e856647a3a17601325e81263eeb36d9336
|
3 |
+
size 1323630
|
output_tokenizer.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d048a1685f9929ab91e6832a33eea0b07d2e05da99c4ee86794c0bc9467bc6b
|
3 |
+
size 644986
|
summarizer.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
import pickle
|
5 |
+
import re
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Import fungsi pemrosesan teks jika tersedia
|
9 |
+
try:
|
10 |
+
from text_processing import clean_text, simple_sentence_tokenize, tokenize_words
|
11 |
+
except ImportError:
|
12 |
+
# Definisi fungsi inline jika modul tidak tersedia
|
13 |
+
def clean_text(text):
|
14 |
+
"""Pembersihan teks yang lebih robust"""
|
15 |
+
if not isinstance(text, str):
|
16 |
+
return ""
|
17 |
+
|
18 |
+
# Remove extra whitespaces
|
19 |
+
text = re.sub(r'\s+', ' ', text)
|
20 |
+
|
21 |
+
# Remove special characters but keep punctuation
|
22 |
+
text = re.sub(r'[^\w\s.,!?;:\-()]', '', text)
|
23 |
+
|
24 |
+
# Remove multiple punctuation
|
25 |
+
text = re.sub(r'[.,!?;:]{2,}', '.', text)
|
26 |
+
|
27 |
+
return text.strip()
|
28 |
+
|
29 |
+
def simple_sentence_tokenize(text):
|
30 |
+
"""Tokenisasi kalimat sederhana tanpa NLTK"""
|
31 |
+
# Bersihkan teks terlebih dahulu
|
32 |
+
text = text.replace('\n', ' ').strip()
|
33 |
+
|
34 |
+
# Pisahkan berdasarkan tanda baca umum
|
35 |
+
sentences = []
|
36 |
+
for part in re.split(r'(?<=[.!?])\s+', text):
|
37 |
+
if part.strip():
|
38 |
+
sentences.append(part.strip())
|
39 |
+
|
40 |
+
# Jika tidak ada kalimat yang ditemukan, kembalikan seluruh teks sebagai satu kalimat
|
41 |
+
if not sentences:
|
42 |
+
return [text]
|
43 |
+
|
44 |
+
return sentences
|
45 |
+
|
46 |
+
def tokenize_words(text):
|
47 |
+
"""Tokenisasi kata sederhana tanpa NLTK"""
|
48 |
+
text = text.lower()
|
49 |
+
# Bersihkan teks
|
50 |
+
text = re.sub(r'[^\w\s]', ' ', text)
|
51 |
+
# Split kata-kata
|
52 |
+
return [word for word in text.split() if word.strip()]
|
53 |
+
|
54 |
+
class TextSummarizer:
|
55 |
+
def __init__(self, model_path=None, input_tokenizer_path=None, output_tokenizer_path=None):
|
56 |
+
"""Inisialisasi text summarizer dengan model dan tokenizer opsional"""
|
57 |
+
self.model = None
|
58 |
+
self.input_tokenizer = None
|
59 |
+
self.output_tokenizer = None
|
60 |
+
self.max_input_len = 200
|
61 |
+
|
62 |
+
# Load model dan tokenizer jika path diberikan
|
63 |
+
if model_path and os.path.exists(model_path) and input_tokenizer_path and os.path.exists(input_tokenizer_path):
|
64 |
+
self.load(model_path, input_tokenizer_path, output_tokenizer_path)
|
65 |
+
|
66 |
+
def load(self, model_path, input_tokenizer_path, output_tokenizer_path=None):
|
67 |
+
"""Load model dan tokenizer dari file"""
|
68 |
+
try:
|
69 |
+
# Load model
|
70 |
+
self.model = tf.keras.models.load_model(model_path)
|
71 |
+
print(f"Model berhasil dimuat dari {model_path}")
|
72 |
+
|
73 |
+
# Load input tokenizer
|
74 |
+
with open(input_tokenizer_path, 'rb') as handle:
|
75 |
+
self.input_tokenizer = pickle.load(handle)
|
76 |
+
print(f"Input tokenizer berhasil dimuat dari {input_tokenizer_path}")
|
77 |
+
|
78 |
+
# Load output tokenizer jika tersedia
|
79 |
+
if output_tokenizer_path and os.path.exists(output_tokenizer_path):
|
80 |
+
with open(output_tokenizer_path, 'rb') as handle:
|
81 |
+
self.output_tokenizer = pickle.load(handle)
|
82 |
+
print(f"Output tokenizer berhasil dimuat dari {output_tokenizer_path}")
|
83 |
+
|
84 |
+
return True
|
85 |
+
except Exception as e:
|
86 |
+
print(f"Error saat memuat model dan tokenizer: {e}")
|
87 |
+
return False
|
88 |
+
|
89 |
+
def predict_sentence_importance(self, sentences):
|
90 |
+
"""Memprediksi pentingnya kalimat menggunakan model"""
|
91 |
+
if self.model is None or self.input_tokenizer is None:
|
92 |
+
raise ValueError("Model atau tokenizer belum dimuat")
|
93 |
+
|
94 |
+
# Tokenize dan pad setiap kalimat
|
95 |
+
sequences = []
|
96 |
+
for sentence in sentences:
|
97 |
+
seq = self.input_tokenizer.texts_to_sequences([sentence])
|
98 |
+
if seq[0]: # Jika tidak kosong
|
99 |
+
padded_seq = tf.keras.preprocessing.sequence.pad_sequences(
|
100 |
+
seq, maxlen=self.max_input_len, padding='post'
|
101 |
+
)
|
102 |
+
sequences.append(padded_seq)
|
103 |
+
else:
|
104 |
+
# Jika tokenisasi gagal, beri nilai 0
|
105 |
+
sequences.append(np.zeros((1, self.max_input_len)))
|
106 |
+
|
107 |
+
# Prediksi skor penting untuk setiap kalimat
|
108 |
+
importance_scores = []
|
109 |
+
for seq in sequences:
|
110 |
+
score = self.model.predict(seq, verbose=0)[0][0]
|
111 |
+
importance_scores.append(score)
|
112 |
+
|
113 |
+
return importance_scores
|
114 |
+
|
115 |
+
def summarize(self, text, max_sentences=3):
|
116 |
+
"""Ringkas teks menggunakan model atau pendekatan ekstraktif"""
|
117 |
+
# Preprocessing
|
118 |
+
cleaned_text = clean_text(text)
|
119 |
+
if not cleaned_text:
|
120 |
+
return "Teks tidak valid atau kosong."
|
121 |
+
|
122 |
+
# Tokenisasi kalimat
|
123 |
+
try:
|
124 |
+
# Coba gunakan NLTK jika tersedia
|
125 |
+
import nltk
|
126 |
+
from nltk.tokenize import sent_tokenize
|
127 |
+
nltk.download('punkt', quiet=True)
|
128 |
+
sentences = sent_tokenize(cleaned_text)
|
129 |
+
except:
|
130 |
+
# Fallback ke tokenisasi sederhana
|
131 |
+
sentences = simple_sentence_tokenize(cleaned_text)
|
132 |
+
|
133 |
+
# Jika teks sudah pendek, return as is
|
134 |
+
if len(sentences) <= max_sentences:
|
135 |
+
return cleaned_text
|
136 |
+
|
137 |
+
# Gunakan model untuk memprediksi kalimat penting jika tersedia
|
138 |
+
if self.model is not None and self.input_tokenizer is not None:
|
139 |
+
try:
|
140 |
+
importance_scores = self.predict_sentence_importance(sentences)
|
141 |
+
|
142 |
+
# Ambil indeks kalimat dengan skor tertinggi
|
143 |
+
top_indices = np.argsort(importance_scores)[-max_sentences:]
|
144 |
+
top_indices = sorted(top_indices) # Urutkan berdasarkan posisi asli
|
145 |
+
|
146 |
+
# Ambil kalimat-kalimat penting
|
147 |
+
summary_sentences = [sentences[i] for i in top_indices]
|
148 |
+
|
149 |
+
return " ".join(summary_sentences)
|
150 |
+
|
151 |
+
except Exception as e:
|
152 |
+
print(f"Error saat prediksi model: {e}")
|
153 |
+
# Fallback ke strategi ekstraktif
|
154 |
+
|
155 |
+
# Strategi ekstraktif sederhana (kalimat pertama, tengah, terakhir)
|
156 |
+
summary_sentences = [sentences[0]] # Kalimat pertama selalu penting
|
157 |
+
|
158 |
+
if max_sentences >= 2:
|
159 |
+
summary_sentences.append(sentences[-1]) # Kalimat terakhir
|
160 |
+
|
161 |
+
if max_sentences >= 3 and len(sentences) > 2:
|
162 |
+
# Tambahkan kalimat tengah
|
163 |
+
middle_idx = len(sentences) // 2
|
164 |
+
if sentences[middle_idx] not in summary_sentences:
|
165 |
+
summary_sentences.insert(1, sentences[middle_idx])
|
166 |
+
|
167 |
+
# Urutkan berdasarkan posisi asli dalam teks
|
168 |
+
positions = []
|
169 |
+
for sent in summary_sentences:
|
170 |
+
for i, s in enumerate(sentences):
|
171 |
+
if sent == s:
|
172 |
+
positions.append(i)
|
173 |
+
break
|
174 |
+
|
175 |
+
sorted_pairs = sorted(zip(positions, summary_sentences))
|
176 |
+
ordered_summary = [pair[1] for pair in sorted_pairs]
|
177 |
+
|
178 |
+
return " ".join(ordered_summary)
|
179 |
+
|
180 |
+
def summarize_text(text, max_sentences=3):
|
181 |
+
"""Fungsi praktis untuk meringkas teks tanpa memerlukan model"""
|
182 |
+
# Preprocessing
|
183 |
+
cleaned_text = clean_text(text)
|
184 |
+
if not cleaned_text:
|
185 |
+
return "Teks tidak valid atau kosong."
|
186 |
+
|
187 |
+
# Tokenisasi kalimat
|
188 |
+
sentences = simple_sentence_tokenize(cleaned_text)
|
189 |
+
|
190 |
+
# Jika teks sudah pendek, return as is
|
191 |
+
if len(sentences) <= max_sentences:
|
192 |
+
return cleaned_text
|
193 |
+
|
194 |
+
# Strategi ekstraktif sederhana (kalimat pertama, tengah, terakhir)
|
195 |
+
summary_sentences = [sentences[0]] # Kalimat pertama selalu penting
|
196 |
+
|
197 |
+
if max_sentences >= 2:
|
198 |
+
summary_sentences.append(sentences[-1]) # Kalimat terakhir
|
199 |
+
|
200 |
+
if max_sentences >= 3 and len(sentences) > 2:
|
201 |
+
# Tambahkan kalimat tengah
|
202 |
+
middle_idx = len(sentences) // 2
|
203 |
+
if sentences[middle_idx] not in summary_sentences:
|
204 |
+
summary_sentences.insert(1, sentences[middle_idx])
|
205 |
+
|
206 |
+
# Urutkan berdasarkan posisi asli dalam teks
|
207 |
+
positions = []
|
208 |
+
for sent in summary_sentences:
|
209 |
+
for i, s in enumerate(sentences):
|
210 |
+
if sent == s:
|
211 |
+
positions.append(i)
|
212 |
+
break
|
213 |
+
|
214 |
+
sorted_pairs = sorted(zip(positions, summary_sentences))
|
215 |
+
ordered_summary = [pair[1] for pair in sorted_pairs]
|
216 |
+
|
217 |
+
return " ".join(ordered_summary)
|
218 |
+
|
219 |
+
# Contoh penggunaan
|
220 |
+
if __name__ == "__main__":
|
221 |
+
# Contoh teks
|
222 |
+
sample_text = '''
|
223 |
+
Pemerintah Indonesia telah mengumumkan rencana pembangunan ibu kota baru di Kalimantan Timur.
|
224 |
+
Keputusan ini diambil setelah melalui studi yang panjang terkait berbagai aspek, termasuk
|
225 |
+
ketahanan terhadap bencana, ketersediaan lahan, dan potensi ekonomi. Ibu kota baru ini diharapkan
|
226 |
+
dapat mengurangi kepadatan di Jakarta dan mendistribusikan pembangunan ekonomi secara lebih merata.
|
227 |
+
Proyek ambisius ini membutuhkan investasi besar dan akan dilaksanakan secara bertahap dalam
|
228 |
+
jangka waktu beberapa tahun. Para ahli menyatakan bahwa perpindahan ibu kota ini juga akan
|
229 |
+
membawa tantangan tersendiri, terutama dalam hal infrastruktur dan adaptasi masyarakat.
|
230 |
+
'''
|
231 |
+
|
232 |
+
# Ringkas teks dengan fungsi sederhana
|
233 |
+
print("\nTeks asli:\n", sample_text)
|
234 |
+
print("\nRingkasan sederhana:\n", summarize_text(sample_text))
|
235 |
+
|
236 |
+
# Coba load model dan ringkas teks
|
237 |
+
try:
|
238 |
+
# Cari file model dan tokenizer di direktori saat ini
|
239 |
+
files = os.listdir('.')
|
240 |
+
model_file = next((f for f in files if f.startswith('text_summarizer_model') and (f.endswith('.keras') or f.endswith('.h5'))), None)
|
241 |
+
input_tokenizer_file = 'input_tokenizer.pickle' if 'input_tokenizer.pickle' in files else None
|
242 |
+
|
243 |
+
if model_file and input_tokenizer_file:
|
244 |
+
summarizer = TextSummarizer(
|
245 |
+
model_path=model_file,
|
246 |
+
input_tokenizer_path=input_tokenizer_file
|
247 |
+
)
|
248 |
+
|
249 |
+
print("\nRingkasan dengan model:\n", summarizer.summarize(sample_text))
|
250 |
+
else:
|
251 |
+
print("\nFile model atau tokenizer tidak ditemukan.")
|
252 |
+
except Exception as e:
|
253 |
+
print(f"\nTidak dapat menggunakan model: {e}")
|
text_processing.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import re
|
3 |
+
|
4 |
+
def clean_text(text):
|
5 |
+
"""Pembersihan teks yang lebih robust"""
|
6 |
+
if not isinstance(text, str):
|
7 |
+
return ""
|
8 |
+
|
9 |
+
# Remove extra whitespaces
|
10 |
+
text = re.sub(r'\s+', ' ', text)
|
11 |
+
|
12 |
+
# Remove special characters but keep punctuation
|
13 |
+
text = re.sub(r'[^\w\s.,!?;:\-()]', '', text)
|
14 |
+
|
15 |
+
# Remove multiple punctuation
|
16 |
+
text = re.sub(r'[.,!?;:]{2,}', '.', text)
|
17 |
+
|
18 |
+
return text.strip()
|
19 |
+
|
20 |
+
def simple_sentence_tokenize(text):
|
21 |
+
"""Tokenisasi kalimat sederhana tanpa NLTK"""
|
22 |
+
# Bersihkan teks terlebih dahulu
|
23 |
+
text = text.replace('\n', ' ').strip()
|
24 |
+
|
25 |
+
# Pisahkan berdasarkan tanda baca umum
|
26 |
+
sentences = []
|
27 |
+
for part in re.split(r'(?<=[.!?])\s+', text):
|
28 |
+
if part.strip():
|
29 |
+
sentences.append(part.strip())
|
30 |
+
|
31 |
+
# Jika tidak ada kalimat yang ditemukan, kembalikan seluruh teks sebagai satu kalimat
|
32 |
+
if not sentences:
|
33 |
+
return [text]
|
34 |
+
|
35 |
+
return sentences
|
36 |
+
|
37 |
+
def tokenize_words(text):
|
38 |
+
"""Tokenisasi kata sederhana tanpa NLTK"""
|
39 |
+
text = text.lower()
|
40 |
+
# Bersihkan teks
|
41 |
+
text = re.sub(r'[^\w\s]', ' ', text)
|
42 |
+
# Split kata-kata
|
43 |
+
return [word for word in text.split() if word.strip()]
|
text_summarizer_model.keras
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb6ae300f65676aee543b9cf392ed381eec2e851f5ae6e77ca6529c071668544
|
3 |
+
size 52147778
|