Initial model upload with self-contained custom code
Browse files- modeling_qwen2.py +118 -505
modeling_qwen2.py
CHANGED
@@ -1,517 +1,130 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
57 |
-
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
58 |
-
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
59 |
-
self.act_fn = ACT2FN[config.hidden_act]
|
60 |
-
|
61 |
-
def forward(self, x):
|
62 |
-
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
63 |
-
return down_proj
|
64 |
-
|
65 |
-
|
66 |
-
def rotate_half(x):
|
67 |
-
"""Rotates half the hidden dims of the input."""
|
68 |
-
x1 = x[..., : x.shape[-1] // 2]
|
69 |
-
x2 = x[..., x.shape[-1] // 2 :]
|
70 |
-
return torch.cat((-x2, x1), dim=-1)
|
71 |
-
|
72 |
-
|
73 |
-
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
74 |
-
cos = cos.unsqueeze(unsqueeze_dim)
|
75 |
-
sin = sin.unsqueeze(unsqueeze_dim)
|
76 |
-
q_embed = (q * cos) + (rotate_half(q) * sin)
|
77 |
-
k_embed = (k * cos) + (rotate_half(k) * sin)
|
78 |
-
return q_embed, k_embed
|
79 |
-
|
80 |
-
|
81 |
-
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
82 |
-
"""
|
83 |
-
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
84 |
-
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
85 |
-
"""
|
86 |
-
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
87 |
-
if n_rep == 1:
|
88 |
-
return hidden_states
|
89 |
-
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
90 |
-
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
91 |
-
|
92 |
-
|
93 |
-
class Qwen2Attention(nn.Module):
|
94 |
-
# ... (rest of the class is unchanged)
|
95 |
-
def __init__(self, config: Qwen2Config, layer_idx: int):
|
96 |
-
super().__init__()
|
97 |
-
self.config = config
|
98 |
-
self.layer_idx = layer_idx
|
99 |
-
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
100 |
-
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
101 |
-
self.scaling = self.head_dim**-0.5
|
102 |
-
self.attention_dropout = config.attention_dropout
|
103 |
-
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
|
104 |
-
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
|
105 |
-
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
|
106 |
-
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
|
107 |
-
|
108 |
-
def forward(
|
109 |
-
self,
|
110 |
-
hidden_states: torch.Tensor,
|
111 |
-
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
112 |
-
attention_mask: Optional[torch.Tensor],
|
113 |
-
past_key_value: Optional[Cache] = None,
|
114 |
-
output_attentions: Optional[bool] = False,
|
115 |
-
cache_position: Optional[torch.LongTensor] = None,
|
116 |
-
is_causal: bool = True,
|
117 |
-
**kwargs: Unpack[FlashAttentionKwargs],
|
118 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
119 |
-
bsz, q_len, _ = hidden_states.size()
|
120 |
-
hidden_shape = (bsz, q_len, -1, self.head_dim)
|
121 |
-
|
122 |
-
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
123 |
-
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
124 |
-
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
125 |
-
|
126 |
-
full_q_len = query_states.size(2)
|
127 |
-
cos, sin = position_embeddings
|
128 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
129 |
-
|
130 |
-
if past_key_value is not None:
|
131 |
-
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
132 |
-
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
133 |
-
|
134 |
-
attention_interface: Callable = ALL_ATTENTION_FUNCTIONS.get(self.config._attn_implementation, None)
|
135 |
-
if attention_interface is None:
|
136 |
-
raise ValueError(f"Attention implementation {self.config._attn_implementation} not found.")
|
137 |
-
|
138 |
-
if self.config._attn_implementation == "sdpa" and output_attentions:
|
139 |
-
logger.warning_once("Using SDPA with `output_attentions=True` requires eager attention.")
|
140 |
-
attention_interface = ALL_ATTENTION_FUNCTIONS["eager"]
|
141 |
-
|
142 |
-
|
143 |
-
attn_output, attn_weights = attention_interface(
|
144 |
-
query_states,
|
145 |
-
key_states,
|
146 |
-
value_states,
|
147 |
-
attention_mask=attention_mask,
|
148 |
-
dropout=self.attention_dropout if self.training else 0.0,
|
149 |
-
is_causal=is_causal,
|
150 |
-
**kwargs,
|
151 |
-
)
|
152 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
153 |
-
attn_output = attn_output.reshape(bsz, q_len, self.config.hidden_size)
|
154 |
-
attn_output = self.o_proj(attn_output)
|
155 |
-
|
156 |
-
if not output_attentions:
|
157 |
-
attn_weights = None
|
158 |
-
|
159 |
-
return attn_output, attn_weights, past_key_value
|
160 |
-
|
161 |
-
# ... (Qwen2RMSNorm, Qwen2DecoderLayer, Qwen2RotaryEmbedding, Qwen2PreTrainedModel, Qwen2Model are unchanged)
|
162 |
-
class Qwen2RMSNorm(nn.Module):
|
163 |
-
def __init__(self, hidden_size, eps=1e-6):
|
164 |
-
super().__init__()
|
165 |
-
self.weight = nn.Parameter(torch.ones(hidden_size))
|
166 |
-
self.variance_epsilon = eps
|
167 |
-
|
168 |
-
def forward(self, hidden_states):
|
169 |
-
input_dtype = hidden_states.dtype
|
170 |
-
hidden_states = hidden_states.to(torch.float32)
|
171 |
-
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
172 |
-
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
173 |
-
return self.weight * hidden_states.to(input_dtype)
|
174 |
-
|
175 |
-
class Qwen2DecoderLayer(nn.Module):
|
176 |
-
def __init__(self, config: Qwen2Config, layer_idx: int):
|
177 |
-
super().__init__()
|
178 |
-
self.hidden_size = config.hidden_size
|
179 |
-
self.self_attn = Qwen2Attention(config=config, layer_idx=layer_idx)
|
180 |
-
self.mlp = Qwen2MLP(config)
|
181 |
-
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
182 |
-
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
183 |
-
|
184 |
-
def forward(
|
185 |
-
self,
|
186 |
-
hidden_states: torch.Tensor,
|
187 |
-
attention_mask: Optional[torch.Tensor] = None,
|
188 |
-
position_ids: Optional[torch.LongTensor] = None,
|
189 |
-
past_key_value: Optional[Cache] = None,
|
190 |
-
output_attentions: Optional[bool] = False,
|
191 |
-
use_cache: Optional[bool] = False,
|
192 |
-
cache_position: Optional[torch.LongTensor] = None,
|
193 |
-
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
194 |
-
is_causal: bool = True,
|
195 |
-
**kwargs: Unpack[FlashAttentionKwargs],
|
196 |
-
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
197 |
-
residual = hidden_states
|
198 |
-
hidden_states = self.input_layernorm(hidden_states)
|
199 |
-
|
200 |
-
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
201 |
-
hidden_states=hidden_states,
|
202 |
-
attention_mask=attention_mask,
|
203 |
-
past_key_value=past_key_value,
|
204 |
-
output_attentions=output_attentions,
|
205 |
-
cache_position=cache_position,
|
206 |
-
position_embeddings=position_embeddings,
|
207 |
-
is_causal=is_causal,
|
208 |
-
**kwargs,
|
209 |
-
)
|
210 |
-
hidden_states = residual + hidden_states
|
211 |
-
|
212 |
-
residual = hidden_states
|
213 |
-
hidden_states = self.post_attention_layernorm(hidden_states)
|
214 |
-
hidden_states = self.mlp(hidden_states)
|
215 |
-
hidden_states = residual + hidden_states
|
216 |
-
|
217 |
-
outputs = (hidden_states,)
|
218 |
-
if output_attentions:
|
219 |
-
outputs += (self_attn_weights,)
|
220 |
-
if use_cache:
|
221 |
-
outputs += (present_key_value,)
|
222 |
-
|
223 |
-
return outputs
|
224 |
-
|
225 |
-
class Qwen2RotaryEmbedding(nn.Module):
|
226 |
-
def __init__(self, config: Qwen2Config, device=None):
|
227 |
-
super().__init__()
|
228 |
-
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
229 |
-
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
230 |
-
else:
|
231 |
-
self.rope_type = "default"
|
232 |
-
self.max_seq_len_cached = config.max_position_embeddings
|
233 |
-
self.original_max_seq_len = config.max_position_embeddings
|
234 |
-
self.config = config
|
235 |
-
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
236 |
-
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
237 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
238 |
-
self.original_inv_freq = self.inv_freq
|
239 |
-
|
240 |
-
def _dynamic_frequency_update(self, position_ids, device):
|
241 |
-
seq_len = torch.max(position_ids) + 1
|
242 |
-
if seq_len > self.max_seq_len_cached:
|
243 |
-
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
|
244 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
245 |
-
self.max_seq_len_cached = seq_len
|
246 |
-
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len:
|
247 |
-
self.original_inv_freq = self.original_inv_freq.to(device)
|
248 |
-
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
249 |
-
self.max_seq_len_cached = self.original_max_seq_len
|
250 |
-
|
251 |
-
@torch.no_grad()
|
252 |
-
def forward(self, x, position_ids):
|
253 |
-
if "dynamic" in self.rope_type:
|
254 |
-
self._dynamic_frequency_update(position_ids, device=x.device)
|
255 |
-
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
256 |
-
position_ids_expanded = position_ids[:, None, :].float()
|
257 |
-
device_type = x.device.type
|
258 |
-
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
259 |
-
with torch.autocast(device_type=device_type, enabled=False):
|
260 |
-
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
261 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
262 |
-
cos = emb.cos()
|
263 |
-
sin = emb.sin()
|
264 |
-
cos = cos * self.attention_scaling
|
265 |
-
sin = sin * self.attention_scaling
|
266 |
-
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
267 |
-
|
268 |
-
@add_start_docstrings(
|
269 |
-
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
270 |
-
QWEN2_START_DOCSTRING,
|
271 |
-
)
|
272 |
-
class Qwen2PreTrainedModel(PreTrainedModel):
|
273 |
-
config_class = Qwen2Config
|
274 |
-
base_model_prefix = "model"
|
275 |
-
supports_gradient_checkpointing = True
|
276 |
-
_no_split_modules = ["Qwen2DecoderLayer"]
|
277 |
-
_skip_keys_device_placement = ["past_key_values"]
|
278 |
-
_supports_flash_attn_2 = True
|
279 |
-
_supports_sdpa = True
|
280 |
-
_supports_cache_class = True
|
281 |
-
|
282 |
-
def _init_weights(self, module):
|
283 |
-
std = self.config.initializer_range
|
284 |
-
if isinstance(module, nn.Linear):
|
285 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
286 |
-
if module.bias is not None:
|
287 |
-
module.bias.data.zero_()
|
288 |
-
elif isinstance(module, nn.Embedding):
|
289 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
290 |
-
if module.padding_idx is not None:
|
291 |
-
module.weight.data[module.padding_idx].zero_()
|
292 |
-
|
293 |
-
class Qwen2Model(Qwen2PreTrainedModel):
|
294 |
-
def __init__(self, config: Qwen2Config):
|
295 |
-
super().__init__(config)
|
296 |
-
self.padding_idx = config.pad_token_id
|
297 |
-
self.vocab_size = config.vocab_size
|
298 |
-
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
299 |
-
self.layers = nn.ModuleList(
|
300 |
-
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
301 |
-
)
|
302 |
-
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
303 |
-
self.rotary_emb = Qwen2RotaryEmbedding(config=config)
|
304 |
-
self.gradient_checkpointing = False
|
305 |
-
self.post_init()
|
306 |
-
|
307 |
-
def get_input_embeddings(self):
|
308 |
-
return self.embed_tokens
|
309 |
-
|
310 |
-
def set_input_embeddings(self, value):
|
311 |
-
self.embed_tokens = value
|
312 |
-
|
313 |
-
def forward(
|
314 |
-
self,
|
315 |
-
input_ids: torch.LongTensor = None,
|
316 |
-
attention_mask: Optional[torch.Tensor] = None,
|
317 |
-
position_ids: Optional[torch.LongTensor] = None,
|
318 |
-
past_key_values: Optional[Cache] = None,
|
319 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
320 |
-
use_cache: Optional[bool] = None,
|
321 |
-
output_attentions: Optional[bool] = None,
|
322 |
-
output_hidden_states: Optional[bool] = None,
|
323 |
-
return_dict: Optional[bool] = None,
|
324 |
-
cache_position: Optional[torch.LongTensor] = None,
|
325 |
-
is_causal: bool = True,
|
326 |
-
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
327 |
-
) -> Union[Tuple, BaseModelOutputWithPast]:
|
328 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
329 |
-
output_hidden_states = (
|
330 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
331 |
-
)
|
332 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
333 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
334 |
-
|
335 |
-
if (input_ids is None) ^ (inputs_embeds is not None):
|
336 |
-
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
337 |
-
if self.gradient_checkpointing and self.training and use_cache:
|
338 |
-
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.")
|
339 |
-
use_cache = False
|
340 |
-
if inputs_embeds is None:
|
341 |
-
inputs_embeds = self.embed_tokens(input_ids)
|
342 |
-
|
343 |
-
past_key_values_length = 0
|
344 |
-
if use_cache:
|
345 |
-
if past_key_values is None:
|
346 |
-
past_key_values = DynamicCache()
|
347 |
-
past_key_values_length = past_key_values.get_seq_length()
|
348 |
-
|
349 |
-
if cache_position is None:
|
350 |
-
cache_position = torch.arange(
|
351 |
-
past_key_values_length, past_key_values_length + inputs_embeds.shape[1], device=inputs_embeds.device
|
352 |
-
)
|
353 |
-
if position_ids is None:
|
354 |
-
position_ids = cache_position.unsqueeze(0)
|
355 |
-
|
356 |
-
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, is_causal)
|
357 |
-
hidden_states = inputs_embeds
|
358 |
-
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
359 |
-
all_hidden_states = () if output_hidden_states else None
|
360 |
-
all_self_attns = () if output_attentions else None
|
361 |
-
next_decoder_cache = () if use_cache else None
|
362 |
-
|
363 |
-
for decoder_layer in self.layers:
|
364 |
-
if output_hidden_states:
|
365 |
-
all_hidden_states += (hidden_states,)
|
366 |
-
|
367 |
-
layer_outputs = decoder_layer(
|
368 |
-
hidden_states,
|
369 |
-
attention_mask=causal_mask,
|
370 |
-
position_ids=position_ids,
|
371 |
-
past_key_value=past_key_values,
|
372 |
-
output_attentions=output_attentions,
|
373 |
-
use_cache=use_cache,
|
374 |
-
cache_position=cache_position,
|
375 |
-
position_embeddings=position_embeddings,
|
376 |
-
is_causal=is_causal,
|
377 |
-
**flash_attn_kwargs,
|
378 |
-
)
|
379 |
-
hidden_states = layer_outputs[0]
|
380 |
-
if use_cache:
|
381 |
-
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
382 |
-
if output_attentions:
|
383 |
-
all_self_attns += (layer_outputs[1],)
|
384 |
-
|
385 |
-
hidden_states = self.norm(hidden_states)
|
386 |
-
if output_hidden_states:
|
387 |
-
all_hidden_states += (hidden_states,)
|
388 |
|
389 |
-
|
|
|
|
|
390 |
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
hidden_states=all_hidden_states,
|
397 |
-
attentions=all_self_attns,
|
398 |
-
)
|
399 |
-
|
400 |
-
def _update_causal_mask(self, attention_mask, input_tensor, cache_position, is_causal):
|
401 |
-
if not is_causal:
|
402 |
-
return attention_mask
|
403 |
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
return None
|
409 |
|
410 |
-
|
411 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
412 |
|
413 |
-
|
414 |
-
|
415 |
|
416 |
-
|
417 |
-
causal_mask = causal_mask.clone()
|
418 |
-
causal_mask = causal_mask + attention_mask[:, None, None, :]
|
419 |
-
|
420 |
-
return causal_mask
|
421 |
-
|
422 |
-
class Qwen2ForCausalLM(Qwen2PreTrainedModel, MDMGenerationMixin):
|
423 |
-
_tied_weights_keys = ["lm_head.weight"]
|
424 |
-
|
425 |
-
def __init__(self, config):
|
426 |
-
super().__init__(config)
|
427 |
-
self.model = Qwen2Model(config)
|
428 |
-
self.vocab_size = config.vocab_size
|
429 |
-
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
430 |
-
self.post_init()
|
431 |
-
|
432 |
-
def get_input_embeddings(self):
|
433 |
-
return self.model.embed_tokens
|
434 |
-
|
435 |
-
def set_input_embeddings(self, value):
|
436 |
-
self.model.embed_tokens = value
|
437 |
-
|
438 |
-
def get_output_embeddings(self):
|
439 |
-
return self.lm_head
|
440 |
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
def set_decoder(self, decoder):
|
445 |
-
self.model = decoder
|
446 |
-
|
447 |
-
def get_decoder(self):
|
448 |
-
return self.model
|
449 |
-
|
450 |
-
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
451 |
-
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
452 |
-
def forward(
|
453 |
-
self,
|
454 |
-
input_ids: torch.LongTensor = None,
|
455 |
-
attention_mask: Optional[torch.Tensor] = None,
|
456 |
-
position_ids: Optional[torch.LongTensor] = None,
|
457 |
-
past_key_values: Optional[Cache] = None,
|
458 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
459 |
-
labels: Optional[torch.LongTensor] = None,
|
460 |
-
use_cache: Optional[bool] = None,
|
461 |
-
output_attentions: Optional[bool] = None,
|
462 |
-
output_hidden_states: Optional[bool] = None,
|
463 |
-
return_dict: Optional[bool] = None,
|
464 |
-
cache_position: Optional[torch.LongTensor] = None,
|
465 |
-
is_causal: bool = True,
|
466 |
-
**kwargs: Unpack[FlashAttentionKwargs],
|
467 |
-
) -> Union[Tuple, CausalLMOutputWithPast]:
|
468 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
469 |
-
output_hidden_states = (
|
470 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
471 |
-
)
|
472 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
473 |
-
|
474 |
-
outputs = self.model(
|
475 |
-
input_ids=input_ids,
|
476 |
-
attention_mask=attention_mask,
|
477 |
-
position_ids=position_ids,
|
478 |
-
past_key_values=past_key_values,
|
479 |
-
inputs_embeds=inputs_embeds,
|
480 |
-
use_cache=use_cache,
|
481 |
-
output_attentions=output_attentions,
|
482 |
-
output_hidden_states=output_hidden_states,
|
483 |
-
return_dict=return_dict,
|
484 |
-
cache_position=cache_position,
|
485 |
-
is_causal=is_causal,
|
486 |
-
**kwargs,
|
487 |
-
)
|
488 |
-
|
489 |
-
hidden_states = outputs[0]
|
490 |
-
logits = self.lm_head(hidden_states)
|
491 |
-
logits = logits.float()
|
492 |
-
loss = None
|
493 |
-
|
494 |
-
if labels is not None:
|
495 |
-
shift_logits = logits[..., :-1, :].contiguous()
|
496 |
-
shift_labels = labels[..., 1:].contiguous()
|
497 |
-
loss_fct = torch.nn.CrossEntropyLoss()
|
498 |
-
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
499 |
-
shift_labels = shift_labels.view(-1)
|
500 |
-
shift_labels = shift_labels.to(shift_logits.device)
|
501 |
-
loss = loss_fct(shift_logits, shift_labels)
|
502 |
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
attentions=outputs.attentions,
|
513 |
)
|
|
|
|
|
514 |
|
515 |
-
|
|
|
|
|
|
|
|
|
516 |
|
517 |
-
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
import sys
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
from huggingface_hub import create_repo, upload_folder
|
9 |
+
|
10 |
+
def main():
|
11 |
+
"""Main function to handle model preparation and upload."""
|
12 |
+
parser = argparse.ArgumentParser(
|
13 |
+
description="Upload a custom Hugging Face model with its self-contained code."
|
14 |
+
)
|
15 |
+
parser.add_argument(
|
16 |
+
"--model_code_path",
|
17 |
+
type=str,
|
18 |
+
required=True,
|
19 |
+
help="Path to the self-contained, single Python model file.",
|
20 |
+
)
|
21 |
+
parser.add_argument(
|
22 |
+
"--ckpt_dir",
|
23 |
+
type=str,
|
24 |
+
required=True,
|
25 |
+
help="Directory containing the model weights and tokenizer files (hf_ckpt).",
|
26 |
+
)
|
27 |
+
parser.add_argument(
|
28 |
+
"--repo",
|
29 |
+
type=str,
|
30 |
+
required=True,
|
31 |
+
help="Name of the repository on Hugging Face Hub (e.g., 'username/repo-name').",
|
32 |
+
)
|
33 |
+
parser.add_argument(
|
34 |
+
"--readme_path",
|
35 |
+
type=str,
|
36 |
+
required=True,
|
37 |
+
help="Path to the README.md file to be included in the repository.",
|
38 |
+
)
|
39 |
+
parser.add_argument(
|
40 |
+
"--private",
|
41 |
+
action="store_true",
|
42 |
+
help="If set, creates a private repository.",
|
43 |
+
)
|
44 |
+
|
45 |
+
args = parser.parse_args()
|
46 |
+
|
47 |
+
staging_dir = Path("./temp_upload_staging")
|
48 |
+
if staging_dir.exists():
|
49 |
+
shutil.rmtree(staging_dir)
|
50 |
+
staging_dir.mkdir()
|
51 |
+
print(f"Created temporary staging directory: {staging_dir}")
|
52 |
+
|
53 |
+
try:
|
54 |
+
# --- 2. Copy All Necessary Files ---
|
55 |
+
print("\nCopying files to staging directory...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
# Copy checkpoint files
|
58 |
+
for f in os.listdir(args.ckpt_dir):
|
59 |
+
shutil.copy(os.path.join(args.ckpt_dir, f), staging_dir)
|
60 |
|
61 |
+
# Copy the single, self-contained model code file
|
62 |
+
model_code_source = Path(args.model_code_path)
|
63 |
+
if not model_code_source.exists():
|
64 |
+
print(f"Error: Model code file not found at {model_code_source}")
|
65 |
+
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
# The destination file MUST be named correctly for auto_map to work.
|
68 |
+
model_code_dest = staging_dir / "modeling_qwen2.py"
|
69 |
+
print(f"Copying model code from {model_code_source} to {model_code_dest}")
|
70 |
+
shutil.copy(model_code_source, model_code_dest)
|
|
|
71 |
|
72 |
+
print("File copying complete.")
|
73 |
+
|
74 |
+
# --- 3. Configure `config.json` for Auto-Loading ---
|
75 |
+
print("\nConfiguring config.json for auto-loading...")
|
76 |
+
config_path = staging_dir / "config.json"
|
77 |
+
if not config_path.exists():
|
78 |
+
print(f"Error: config.json not found in {args.ckpt_dir}")
|
79 |
+
sys.exit(1)
|
80 |
+
|
81 |
+
with open(config_path, "r", encoding="utf-8") as f:
|
82 |
+
config_data = json.load(f)
|
83 |
+
|
84 |
+
config_data["auto_map"] = {
|
85 |
+
"AutoModelForCausalLM": "modeling_qwen2.Qwen2ForCausalLM"
|
86 |
+
}
|
87 |
+
config_data["architectures"] = ["Qwen2ForCausalLM"]
|
88 |
+
config_data["trust_remote_code"] = True
|
89 |
+
|
90 |
+
with open(config_path, "w", encoding="utf-8") as f:
|
91 |
+
json.dump(config_data, f, indent=2)
|
92 |
+
print("config.json updated successfully.")
|
93 |
+
|
94 |
+
# --- 4. Copy `README.md` ---
|
95 |
+
print("\nCopying README.md...")
|
96 |
+
readme_source = Path(args.readme_path)
|
97 |
+
if not readme_source.exists():
|
98 |
+
print(f"Error: README file not found at {readme_source}")
|
99 |
+
sys.exit(1)
|
100 |
|
101 |
+
with open(readme_source, "r", encoding="utf-8") as f:
|
102 |
+
readme_content = f.read()
|
103 |
|
104 |
+
readme_content = readme_content.replace("{repo_id}", args.repo)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
with open(staging_dir / "README.md", "w", encoding="utf-8") as f:
|
107 |
+
f.write(readme_content)
|
108 |
+
print("README.md copied and processed.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
# --- 5. Upload to the Hub ---
|
111 |
+
print(f"\nPreparing to upload to repository: {args.repo}")
|
112 |
+
repo_url = create_repo(args.repo, repo_type="model", exist_ok=True, private=args.private)
|
113 |
|
114 |
+
upload_folder(
|
115 |
+
folder_path=staging_dir,
|
116 |
+
repo_id=args.repo,
|
117 |
+
repo_type="model",
|
118 |
+
commit_message="Initial model upload with self-contained custom code",
|
|
|
119 |
)
|
120 |
+
print("\n🚀 Upload complete! 🚀")
|
121 |
+
print(f"Check out your model at: {repo_url}")
|
122 |
|
123 |
+
finally:
|
124 |
+
# --- 6. Clean Up ---
|
125 |
+
print("\nCleaning up temporary staging directory...")
|
126 |
+
shutil.rmtree(staging_dir)
|
127 |
+
print("Cleanup complete.")
|
128 |
|
129 |
+
if __name__ == "__main__":
|
130 |
+
main()
|