Initial model upload with custom code
Browse files- .gitattributes +1 -0
- README.md +58 -0
- __init__.py +13 -0
- added_tokens.json +25 -0
- config.json +32 -0
- generation_config.json +9 -0
- generation_utils.py +249 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modeling_qwen2.py +1084 -0
- special_tokens_map.json +38 -0
- tokenizer.json +3 -0
- tokenizer_config.json +218 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- code
|
5 |
+
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- masked-diffusion
|
8 |
+
- code-generation
|
9 |
+
- qwen2
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model: fredzzp/open-dcoder-0.5B
|
13 |
+
|
14 |
+
This repository contains the weights and custom code for the **fredzzp/open-dcoder-0.5B** model, a masked diffusion model for code generation based on the Qwen2 architecture.
|
15 |
+
|
16 |
+
This model uses bidirectional attention and must be used with the custom `diffusion_generate` method.
|
17 |
+
|
18 |
+
## How to Use
|
19 |
+
|
20 |
+
First, make sure you have the latest `transformers` library installed.
|
21 |
+
|
22 |
+
```bash
|
23 |
+
pip install transformers torch huggingface_hub
|
24 |
+
|
25 |
+
You can then use the model for generation. Note: You must pass trust_remote_code=True to load the custom model architecture.
|
26 |
+
|
27 |
+
import torch
|
28 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
29 |
+
|
30 |
+
model_id = "fredzzp/open-dcoder-0.5B"
|
31 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
+
|
33 |
+
# trust_remote_code=True is essential
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
35 |
+
model = AutoModelForCausalLM.from_pretrained(
|
36 |
+
model_id,
|
37 |
+
torch_dtype=torch.bfloat16,
|
38 |
+
trust_remote_code=True
|
39 |
+
).to(device)
|
40 |
+
|
41 |
+
prompt = "def fibonacci(n):"
|
42 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
43 |
+
|
44 |
+
# The model will use the generation_config.json from the repo by default
|
45 |
+
# You can also override parameters here
|
46 |
+
outputs = model.diffusion_generate(
|
47 |
+
inputs=input_ids,
|
48 |
+
max_new_tokens=100,
|
49 |
+
steps=16,
|
50 |
+
temperature=0.8
|
51 |
+
)
|
52 |
+
|
53 |
+
# Decode the output
|
54 |
+
prompt_len = input_ids.shape[1]
|
55 |
+
generated_text = tokenizer.decode(outputs.sequences[0][prompt_len:], skip_special_tokens=True)
|
56 |
+
|
57 |
+
print("--- Generated Code ---")
|
58 |
+
print(generated_text)
|
__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2025 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
added_tokens.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<M>": 151665,
|
4 |
+
"<tool_call>": 151657,
|
5 |
+
"<|box_end|>": 151649,
|
6 |
+
"<|box_start|>": 151648,
|
7 |
+
"<|endoftext|>": 151643,
|
8 |
+
"<|file_sep|>": 151664,
|
9 |
+
"<|fim_middle|>": 151660,
|
10 |
+
"<|fim_pad|>": 151662,
|
11 |
+
"<|fim_prefix|>": 151659,
|
12 |
+
"<|fim_suffix|>": 151661,
|
13 |
+
"<|im_end|>": 151645,
|
14 |
+
"<|im_start|>": 151644,
|
15 |
+
"<|image_pad|>": 151655,
|
16 |
+
"<|object_ref_end|>": 151647,
|
17 |
+
"<|object_ref_start|>": 151646,
|
18 |
+
"<|quad_end|>": 151651,
|
19 |
+
"<|quad_start|>": 151650,
|
20 |
+
"<|repo_name|>": 151663,
|
21 |
+
"<|video_pad|>": 151656,
|
22 |
+
"<|vision_end|>": 151653,
|
23 |
+
"<|vision_pad|>": 151654,
|
24 |
+
"<|vision_start|>": 151652
|
25 |
+
}
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_attn_implementation_autoset": true,
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151643,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 896,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 4864,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 24,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 14,
|
17 |
+
"num_hidden_layers": 24,
|
18 |
+
"num_key_value_heads": 2,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": 32768,
|
23 |
+
"tie_word_embeddings": true,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.51.3",
|
26 |
+
"use_cache": true,
|
27 |
+
"use_sliding_window": false,
|
28 |
+
"vocab_size": 151936,
|
29 |
+
"auto_map": {
|
30 |
+
"AutoModelForCausalLM": "modeling_qwen2.Qwen2ForCausalLM"
|
31 |
+
}
|
32 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"mask_token_id": 151643,
|
3 |
+
"max_new_tokens": 256,
|
4 |
+
"steps": 24,
|
5 |
+
"temperature": 0.7,
|
6 |
+
"top_k": 500,
|
7 |
+
"alg": "entropy",
|
8 |
+
"alg_temp": 0.6
|
9 |
+
}
|
generation_utils.py
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# veomni/models/transformers/qwen2/generation_utils.py
|
2 |
+
|
3 |
+
import warnings
|
4 |
+
import copy
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.distributions as dists
|
10 |
+
from torch.nn import functional as F
|
11 |
+
from transformers import __version__
|
12 |
+
from transformers.generation.configuration_utils import GenerationConfig
|
13 |
+
from transformers.utils import ModelOutput, is_torchdynamo_compiling, logging
|
14 |
+
|
15 |
+
logger = logging.get_logger(__name__)
|
16 |
+
|
17 |
+
|
18 |
+
def top_p_logits(logits, top_p=None):
|
19 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
20 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
21 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
22 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
23 |
+
sorted_indices_to_remove[..., 0] = 0
|
24 |
+
mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device)
|
25 |
+
mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove)
|
26 |
+
logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min)
|
27 |
+
return logits
|
28 |
+
|
29 |
+
def top_k_logits(logits, top_k=None):
|
30 |
+
if top_k is None or top_k == 0:
|
31 |
+
return logits
|
32 |
+
top_k = min(top_k, logits.size(-1))
|
33 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
34 |
+
logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min)
|
35 |
+
return logits
|
36 |
+
|
37 |
+
def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False):
|
38 |
+
if temperature > 0:
|
39 |
+
logits = logits / temperature
|
40 |
+
if top_p is not None and top_p < 1:
|
41 |
+
logits = top_p_logits(logits, top_p)
|
42 |
+
if top_k is not None:
|
43 |
+
logits = top_k_logits(logits, top_k)
|
44 |
+
probs = torch.softmax(logits.float(), dim=-1)
|
45 |
+
if temperature > 0:
|
46 |
+
x0 = dists.Categorical(probs=probs).sample()
|
47 |
+
else:
|
48 |
+
_, x0 = probs.max(dim=-1)
|
49 |
+
|
50 |
+
confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1)
|
51 |
+
|
52 |
+
if margin_confidence:
|
53 |
+
sorted_probs, _ = torch.sort(probs, dim=-1, descending=True)
|
54 |
+
top1_probs = sorted_probs[..., 0]
|
55 |
+
top2_probs = sorted_probs[..., 1]
|
56 |
+
confidence = top1_probs - top2_probs
|
57 |
+
elif neg_entropy:
|
58 |
+
log_probs = torch.log(probs.clamp(min=1e-10))
|
59 |
+
confidence = (probs * log_probs).sum(dim=-1)
|
60 |
+
|
61 |
+
return confidence, x0
|
62 |
+
|
63 |
+
|
64 |
+
@dataclass
|
65 |
+
class MDMModelOutput(ModelOutput):
|
66 |
+
sequences: torch.LongTensor = None
|
67 |
+
history: Optional[Tuple[torch.FloatTensor]] = None
|
68 |
+
|
69 |
+
class MDMGenerationConfig(GenerationConfig):
|
70 |
+
def __init__(self, **kwargs):
|
71 |
+
super().__init__(**kwargs)
|
72 |
+
self.temperature: float = kwargs.pop("temperature", 0.0)
|
73 |
+
self.top_p: Optional[float] = kwargs.pop("top_p", None)
|
74 |
+
self.top_k: Optional[int] = kwargs.pop("top_k", None)
|
75 |
+
self.eps: float = kwargs.pop("eps", 1e-3)
|
76 |
+
self.steps: int = kwargs.pop("steps", 512)
|
77 |
+
self.alg: str = kwargs.pop("alg", 'entropy')
|
78 |
+
self.alg_temp: Optional[float] = kwargs.pop("alg_temp", 0.0)
|
79 |
+
self.output_history: bool = kwargs.pop("output_history", False)
|
80 |
+
self.mask_token_id = kwargs.pop("mask_token_id", None)
|
81 |
+
|
82 |
+
|
83 |
+
class MDMGenerationMixin:
|
84 |
+
"""
|
85 |
+
Mixin class for Masked Diffusion Model generation, adapted from the Dream model's generation utils.
|
86 |
+
"""
|
87 |
+
@staticmethod
|
88 |
+
def _expand_inputs_for_generation(
|
89 |
+
expand_size: int = 1,
|
90 |
+
input_ids: Optional[torch.LongTensor] = None,
|
91 |
+
attention_mask: Optional[torch.LongTensor] = None
|
92 |
+
) -> Tuple[torch.LongTensor, Dict[str, Any]]:
|
93 |
+
if expand_size == 1:
|
94 |
+
return input_ids, attention_mask
|
95 |
+
|
96 |
+
if input_ids is not None:
|
97 |
+
input_ids = input_ids.repeat_interleave(expand_size, dim=0)
|
98 |
+
if attention_mask is not None:
|
99 |
+
attention_mask = attention_mask.repeat_interleave(expand_size, dim=0)
|
100 |
+
return input_ids, attention_mask
|
101 |
+
|
102 |
+
def _prepare_generation_config(
|
103 |
+
self, generation_config: Optional[GenerationConfig], **kwargs
|
104 |
+
) -> MDMGenerationConfig:
|
105 |
+
if generation_config is None:
|
106 |
+
generation_config = self.generation_config
|
107 |
+
|
108 |
+
# Use MDMGenerationConfig as the target class
|
109 |
+
if not isinstance(generation_config, MDMGenerationConfig):
|
110 |
+
generation_config = MDMGenerationConfig.from_dict(generation_config.to_dict())
|
111 |
+
|
112 |
+
# Update with kwargs
|
113 |
+
generation_config.update(**kwargs)
|
114 |
+
return generation_config
|
115 |
+
|
116 |
+
@torch.no_grad()
|
117 |
+
def diffusion_generate(
|
118 |
+
self,
|
119 |
+
inputs: Optional[torch.Tensor] = None,
|
120 |
+
generation_config: Optional[MDMGenerationConfig] = None,
|
121 |
+
**kwargs,
|
122 |
+
) -> Union[MDMModelOutput, torch.LongTensor]:
|
123 |
+
|
124 |
+
# 1. Prepare generation config
|
125 |
+
generation_config = self._prepare_generation_config(generation_config, **kwargs)
|
126 |
+
|
127 |
+
# 2. Prepare inputs
|
128 |
+
input_ids = inputs
|
129 |
+
attention_mask = kwargs.get("attention_mask", None)
|
130 |
+
|
131 |
+
if input_ids is None:
|
132 |
+
raise ValueError("`inputs` must be provided for diffusion generation.")
|
133 |
+
|
134 |
+
if generation_config.max_new_tokens is not None:
|
135 |
+
generation_config.max_length = input_ids.shape[-1] + generation_config.max_new_tokens
|
136 |
+
|
137 |
+
# 3. Expand inputs for multi-sequence generation
|
138 |
+
input_ids, attention_mask = self._expand_inputs_for_generation(
|
139 |
+
expand_size=generation_config.num_return_sequences,
|
140 |
+
input_ids=input_ids,
|
141 |
+
attention_mask=attention_mask
|
142 |
+
)
|
143 |
+
# 4. Run the sampling loop
|
144 |
+
return self._sample(
|
145 |
+
input_ids,
|
146 |
+
attention_mask=attention_mask,
|
147 |
+
generation_config=generation_config
|
148 |
+
)
|
149 |
+
|
150 |
+
def _sample(
|
151 |
+
self,
|
152 |
+
input_ids: torch.LongTensor,
|
153 |
+
attention_mask: Optional[torch.LongTensor],
|
154 |
+
generation_config: MDMGenerationConfig
|
155 |
+
) -> Union[MDMModelOutput, torch.LongTensor]:
|
156 |
+
|
157 |
+
# Extract params from config
|
158 |
+
max_length = generation_config.max_length
|
159 |
+
mask_token_id = generation_config.mask_token_id
|
160 |
+
if mask_token_id is None:
|
161 |
+
raise ValueError("`mask_token_id` must be set in the generation config.")
|
162 |
+
|
163 |
+
steps = generation_config.steps
|
164 |
+
eps = generation_config.eps
|
165 |
+
alg = generation_config.alg
|
166 |
+
alg_temp = generation_config.alg_temp
|
167 |
+
temperature = generation_config.temperature
|
168 |
+
top_p = generation_config.top_p
|
169 |
+
top_k = generation_config.top_k
|
170 |
+
|
171 |
+
histories = [] if generation_config.output_history else None
|
172 |
+
|
173 |
+
# Pad input_ids to max_length with mask tokens
|
174 |
+
x = F.pad(input_ids, (0, max_length - input_ids.shape[1]), value=mask_token_id)
|
175 |
+
|
176 |
+
# The model expects a bidirectional mask, so we just use the presence of pad_token_id
|
177 |
+
# for the attention mask during generation.
|
178 |
+
gen_attention_mask = (x != self.config.pad_token_id).long() if self.config.pad_token_id is not None else None
|
179 |
+
|
180 |
+
timesteps = torch.linspace(1, eps, steps + 1, device=x.device)
|
181 |
+
|
182 |
+
for i in range(steps):
|
183 |
+
mask_index = (x == mask_token_id)
|
184 |
+
if not mask_index.any(): # Stop if no tokens are masked
|
185 |
+
break
|
186 |
+
# is_causal=False is crucial for bidirectional attention
|
187 |
+
outputs = self(input_ids=x, attention_mask=gen_attention_mask, is_causal=False)
|
188 |
+
logits = outputs.logits
|
189 |
+
|
190 |
+
# CRITICAL: Shift logits to predict the next token, aligning with training
|
191 |
+
logits = torch.cat([logits[:, :1], logits[:, :-1]], dim=1)
|
192 |
+
|
193 |
+
mask_logits = logits[mask_index]
|
194 |
+
t = timesteps[i]
|
195 |
+
s = timesteps[i + 1]
|
196 |
+
|
197 |
+
if alg == 'origin':
|
198 |
+
p_transfer = 1 - s / t if i < steps - 1 else 1
|
199 |
+
x0 = torch.full_like(x[mask_index], fill_value=mask_token_id, device=self.device, dtype=torch.long)
|
200 |
+
transfer_index_t_s = torch.rand(*x0.shape, device=self.device) < p_transfer
|
201 |
+
_, sampled_tokens = sample_tokens(mask_logits[transfer_index_t_s], temperature=temperature, top_p=top_p, top_k=top_k)
|
202 |
+
x0[transfer_index_t_s] = sampled_tokens
|
203 |
+
x[mask_index] = x0
|
204 |
+
else:
|
205 |
+
# Confidence-based sampling (maskgit, entropy, etc.)
|
206 |
+
confidence_alg_map = {'maskgit_plus': False, 'topk_margin': True, 'entropy': True}
|
207 |
+
is_margin_conf = confidence_alg_map.get(alg, False)
|
208 |
+
is_neg_entropy = alg == 'entropy'
|
209 |
+
|
210 |
+
confidence, x0 = sample_tokens(mask_logits, temperature, top_p, top_k, margin_confidence=is_margin_conf, neg_entropy=is_neg_entropy)
|
211 |
+
|
212 |
+
num_masked = mask_index.sum(dim=-1, keepdim=True)
|
213 |
+
gamma = 1 - s / t
|
214 |
+
num_to_unmask = (num_masked * gamma).long()
|
215 |
+
|
216 |
+
# Place confidence scores back into a full tensor to find top-k across the sequence
|
217 |
+
full_confidence = torch.full_like(x, -torch.inf, device=self.device, dtype=confidence.dtype)
|
218 |
+
full_confidence[mask_index] = confidence
|
219 |
+
|
220 |
+
if (alg_temp is not None and alg_temp > 0):
|
221 |
+
# Temperature-based sampling of which tokens to unmask
|
222 |
+
unmask_probs = F.softmax(full_confidence / alg_temp, dim=-1)
|
223 |
+
unmask_indices = torch.multinomial(unmask_probs, num_samples=num_to_unmask.max(), replacement=False)
|
224 |
+
else:
|
225 |
+
# Top-k confidence sampling
|
226 |
+
_, unmask_indices = torch.topk(full_confidence, k=num_to_unmask.max(), dim=-1)
|
227 |
+
|
228 |
+
# Create a mask for the tokens we are going to unmask
|
229 |
+
rows = torch.arange(x.size(0), device=x.device).unsqueeze(1)
|
230 |
+
unmask_selection_mask = torch.zeros_like(x, dtype=torch.bool)
|
231 |
+
unmask_selection_mask[rows, unmask_indices] = True
|
232 |
+
|
233 |
+
# Filter indices based on per-row `num_to_unmask`
|
234 |
+
unmask_selection_mask = unmask_selection_mask & (torch.cumsum(unmask_selection_mask.long(), dim=-1) <= num_to_unmask)
|
235 |
+
|
236 |
+
# Place the newly generated tokens (x0) into a full tensor
|
237 |
+
x_unmasked_proposals = torch.full_like(x, fill_value=mask_token_id)
|
238 |
+
x_unmasked_proposals[mask_index] = x0
|
239 |
+
|
240 |
+
# Update the main tensor `x` with the unmasked tokens
|
241 |
+
x[unmask_selection_mask] = x_unmasked_proposals[unmask_selection_mask]
|
242 |
+
|
243 |
+
if histories is not None:
|
244 |
+
histories.append(x.clone())
|
245 |
+
|
246 |
+
if generation_config.return_dict_in_generate:
|
247 |
+
return MDMModelOutput(sequences=x, history=histories)
|
248 |
+
else:
|
249 |
+
return x
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d28ef84b77c6d180347b2de1fe48c92c4e487d807ae85cf217f30f3574fc9df2
|
3 |
+
size 1260367448
|
modeling_qwen2.py
ADDED
@@ -0,0 +1,1084 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
# Copyright 2025 Bytedance Ltd. and/or its affiliates
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# adapted from https://github.com/huggingface/transformers/blob/v4.49.0/src/transformers/models/qwen2/modeling_qwen2.py
|
17 |
+
from typing import Callable, List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from torch import nn
|
21 |
+
from transformers.activations import ACT2FN
|
22 |
+
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
|
23 |
+
from transformers.generation import GenerationMixin
|
24 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
25 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
26 |
+
from transformers.modeling_outputs import (
|
27 |
+
BaseModelOutputWithPast,
|
28 |
+
CausalLMOutputWithPast,
|
29 |
+
)
|
30 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
31 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
32 |
+
from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
|
33 |
+
from transformers.processing_utils import Unpack
|
34 |
+
from transformers.utils import (
|
35 |
+
# LossKwargs,
|
36 |
+
add_start_docstrings,
|
37 |
+
add_start_docstrings_to_model_forward,
|
38 |
+
replace_return_docstrings,
|
39 |
+
)
|
40 |
+
|
41 |
+
from veomni.models.transformers.qwen2.generation_utils import MDMGenerationMixin
|
42 |
+
|
43 |
+
from ....data.constants import IGNORE_INDEX
|
44 |
+
from ....distributed.parallel_state import get_parallel_state
|
45 |
+
from ....distributed.sequence_parallel import (
|
46 |
+
gather_heads_scatter_seq,
|
47 |
+
gather_seq_scatter_heads,
|
48 |
+
reduce_sequence_parallel_loss,
|
49 |
+
)
|
50 |
+
from ....utils import logging
|
51 |
+
from ....utils.import_utils import is_liger_kernel_available
|
52 |
+
|
53 |
+
|
54 |
+
if is_liger_kernel_available():
|
55 |
+
from liger_kernel.transformers import LigerFusedLinearCrossEntropyLoss # type: ignore
|
56 |
+
from liger_kernel.transformers.rms_norm import LigerRMSNorm
|
57 |
+
from liger_kernel.transformers.rope import liger_rotary_pos_emb
|
58 |
+
from liger_kernel.transformers.swiglu import LigerSwiGLUMLP
|
59 |
+
|
60 |
+
logger = logging.get_logger(__name__)
|
61 |
+
|
62 |
+
_CHECKPOINT_FOR_DOC = "meta-qwen2/Qwen2-2-7b-hf"
|
63 |
+
_CONFIG_FOR_DOC = "Qwen2Config"
|
64 |
+
|
65 |
+
|
66 |
+
class Qwen2MLP(nn.Module):
|
67 |
+
def __init__(self, config):
|
68 |
+
super().__init__()
|
69 |
+
self.config = config
|
70 |
+
self.hidden_size = config.hidden_size
|
71 |
+
self.intermediate_size = config.intermediate_size
|
72 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
73 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
74 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
75 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
76 |
+
|
77 |
+
def forward(self, x):
|
78 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
79 |
+
return down_proj
|
80 |
+
|
81 |
+
|
82 |
+
def rotate_half(x):
|
83 |
+
"""Rotates half the hidden dims of the input."""
|
84 |
+
x1 = x[..., : x.shape[-1] // 2]
|
85 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
86 |
+
return torch.cat((-x2, x1), dim=-1)
|
87 |
+
|
88 |
+
|
89 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
90 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
q (`torch.Tensor`): The query tensor.
|
94 |
+
k (`torch.Tensor`): The key tensor.
|
95 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
96 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
97 |
+
position_ids (`torch.Tensor`, *optional*):
|
98 |
+
Deprecated and unused.
|
99 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
100 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
101 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
102 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
103 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
104 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
105 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
106 |
+
Returns:
|
107 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
108 |
+
"""
|
109 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
110 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
111 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
112 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
113 |
+
return q_embed, k_embed
|
114 |
+
|
115 |
+
|
116 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
117 |
+
"""
|
118 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
119 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
120 |
+
"""
|
121 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
122 |
+
if n_rep == 1:
|
123 |
+
return hidden_states
|
124 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
125 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
126 |
+
|
127 |
+
|
128 |
+
def eager_attention_forward(
|
129 |
+
module: nn.Module,
|
130 |
+
query: torch.Tensor,
|
131 |
+
key: torch.Tensor,
|
132 |
+
value: torch.Tensor,
|
133 |
+
attention_mask: Optional[torch.Tensor],
|
134 |
+
scaling: float,
|
135 |
+
dropout: float = 0.0,
|
136 |
+
**kwargs,
|
137 |
+
):
|
138 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
139 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
140 |
+
|
141 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
142 |
+
if attention_mask is not None:
|
143 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
144 |
+
attn_weights = attn_weights + causal_mask
|
145 |
+
|
146 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
147 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
148 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
149 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
150 |
+
|
151 |
+
return attn_output, attn_weights
|
152 |
+
|
153 |
+
|
154 |
+
class Qwen2Attention(nn.Module):
|
155 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
156 |
+
|
157 |
+
def __init__(self, config: Qwen2Config, layer_idx: int):
|
158 |
+
super().__init__()
|
159 |
+
self.config = config
|
160 |
+
self.layer_idx = layer_idx
|
161 |
+
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
162 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
163 |
+
self.scaling = self.head_dim**-0.5
|
164 |
+
self.attention_dropout = config.attention_dropout
|
165 |
+
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
|
166 |
+
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
|
167 |
+
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
|
168 |
+
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
|
169 |
+
|
170 |
+
def forward(
|
171 |
+
self,
|
172 |
+
hidden_states: torch.Tensor,
|
173 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
174 |
+
attention_mask: Optional[torch.Tensor],
|
175 |
+
past_key_value: Optional[Cache] = None,
|
176 |
+
cache_position: Optional[torch.LongTensor] = None,
|
177 |
+
is_causal: bool = True,
|
178 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
179 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
180 |
+
bsz, q_len, _ = hidden_states.size() # q_len = seq_length / sp_size
|
181 |
+
hidden_shape = (bsz, q_len, -1, self.head_dim)
|
182 |
+
|
183 |
+
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
184 |
+
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
185 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
186 |
+
if get_parallel_state().ulysses_enabled:
|
187 |
+
query_states = gather_seq_scatter_heads(query_states, seq_dim=2, head_dim=1)
|
188 |
+
key_states = gather_seq_scatter_heads(key_states, seq_dim=2, head_dim=1)
|
189 |
+
value_states = gather_seq_scatter_heads(value_states, seq_dim=2, head_dim=1)
|
190 |
+
# (batch_size, num_head / sp_size, seq_length, head_size)
|
191 |
+
|
192 |
+
full_q_len = query_states.size(2) # full_q_len = seq_length
|
193 |
+
cos, sin = position_embeddings
|
194 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
195 |
+
|
196 |
+
if past_key_value is not None:
|
197 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
198 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
199 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
200 |
+
|
201 |
+
sliding_window = None
|
202 |
+
if (
|
203 |
+
self.config.use_sliding_window
|
204 |
+
and getattr(self.config, "sliding_window", None) is not None
|
205 |
+
and self.layer_idx >= self.config.max_window_layers
|
206 |
+
):
|
207 |
+
sliding_window = self.config.sliding_window
|
208 |
+
|
209 |
+
attention_interface: Callable = eager_attention_forward
|
210 |
+
if self.config._attn_implementation != "eager":
|
211 |
+
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
212 |
+
logger.warning_once(
|
213 |
+
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
214 |
+
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
215 |
+
)
|
216 |
+
else:
|
217 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
218 |
+
self.is_causal = is_causal
|
219 |
+
attn_output, attn_weights = attention_interface(
|
220 |
+
self,
|
221 |
+
query_states,
|
222 |
+
key_states,
|
223 |
+
value_states,
|
224 |
+
attention_mask,
|
225 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
226 |
+
scaling=self.scaling,
|
227 |
+
sliding_window=sliding_window, # main diff with Llama
|
228 |
+
**kwargs,
|
229 |
+
)
|
230 |
+
|
231 |
+
attn_output = attn_output.reshape(bsz, full_q_len, -1, self.head_dim).contiguous()
|
232 |
+
if get_parallel_state().ulysses_enabled:
|
233 |
+
attn_output = gather_heads_scatter_seq(attn_output, head_dim=2, seq_dim=1)
|
234 |
+
|
235 |
+
attn_output = attn_output.reshape(bsz, q_len, self.config.hidden_size).contiguous()
|
236 |
+
attn_output = self.o_proj(attn_output)
|
237 |
+
return attn_output, attn_weights
|
238 |
+
|
239 |
+
|
240 |
+
class Qwen2RMSNorm(nn.Module):
|
241 |
+
def __init__(self, hidden_size, eps=1e-6):
|
242 |
+
"""
|
243 |
+
Qwen2RMSNorm is equivalent to T5LayerNorm
|
244 |
+
"""
|
245 |
+
super().__init__()
|
246 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
247 |
+
self.variance_epsilon = eps
|
248 |
+
|
249 |
+
def forward(self, hidden_states):
|
250 |
+
input_dtype = hidden_states.dtype
|
251 |
+
hidden_states = hidden_states.to(torch.float32)
|
252 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
253 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
254 |
+
return self.weight * hidden_states.to(input_dtype)
|
255 |
+
|
256 |
+
def extra_repr(self):
|
257 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
258 |
+
|
259 |
+
|
260 |
+
class Qwen2DecoderLayer(nn.Module):
|
261 |
+
def __init__(self, config: Qwen2Config, layer_idx: int):
|
262 |
+
super().__init__()
|
263 |
+
self.hidden_size = config.hidden_size
|
264 |
+
self.self_attn = Qwen2Attention(config=config, layer_idx=layer_idx)
|
265 |
+
self.mlp = Qwen2MLP(config)
|
266 |
+
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
267 |
+
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
268 |
+
if config.sliding_window and config._attn_implementation != "flash_attention_2":
|
269 |
+
logger.warning_once(
|
270 |
+
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
|
271 |
+
"unexpected results may be encountered."
|
272 |
+
)
|
273 |
+
|
274 |
+
def forward(
|
275 |
+
self,
|
276 |
+
hidden_states: torch.Tensor,
|
277 |
+
attention_mask: Optional[torch.Tensor] = None,
|
278 |
+
position_ids: Optional[torch.LongTensor] = None,
|
279 |
+
past_key_value: Optional[Cache] = None,
|
280 |
+
output_attentions: Optional[bool] = False,
|
281 |
+
use_cache: Optional[bool] = False,
|
282 |
+
cache_position: Optional[torch.LongTensor] = None,
|
283 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
284 |
+
is_causal: bool = True,
|
285 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
286 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
287 |
+
residual = hidden_states
|
288 |
+
|
289 |
+
hidden_states = self.input_layernorm(hidden_states)
|
290 |
+
|
291 |
+
# Self Attention
|
292 |
+
hidden_states, self_attn_weights = self.self_attn(
|
293 |
+
hidden_states=hidden_states,
|
294 |
+
attention_mask=attention_mask,
|
295 |
+
position_ids=position_ids,
|
296 |
+
past_key_value=past_key_value,
|
297 |
+
output_attentions=output_attentions,
|
298 |
+
use_cache=use_cache,
|
299 |
+
cache_position=cache_position,
|
300 |
+
position_embeddings=position_embeddings,
|
301 |
+
is_causal=is_causal,
|
302 |
+
**kwargs,
|
303 |
+
)
|
304 |
+
hidden_states = residual + hidden_states
|
305 |
+
|
306 |
+
# Fully Connected
|
307 |
+
residual = hidden_states
|
308 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
309 |
+
hidden_states = self.mlp(hidden_states)
|
310 |
+
hidden_states = residual + hidden_states
|
311 |
+
|
312 |
+
outputs = (hidden_states,)
|
313 |
+
if output_attentions:
|
314 |
+
outputs += (self_attn_weights,)
|
315 |
+
|
316 |
+
return outputs
|
317 |
+
|
318 |
+
|
319 |
+
class Qwen2RotaryEmbedding(nn.Module):
|
320 |
+
def __init__(self, config: Qwen2Config, device=None):
|
321 |
+
super().__init__()
|
322 |
+
# BC: "rope_type" was originally "type"
|
323 |
+
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
324 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
325 |
+
else:
|
326 |
+
self.rope_type = "default"
|
327 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
328 |
+
self.original_max_seq_len = config.max_position_embeddings
|
329 |
+
|
330 |
+
self.config = config
|
331 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
332 |
+
|
333 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
334 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
335 |
+
self.original_inv_freq = self.inv_freq
|
336 |
+
|
337 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
338 |
+
"""
|
339 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
340 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
341 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
342 |
+
"""
|
343 |
+
seq_len = torch.max(position_ids) + 1
|
344 |
+
if seq_len > self.max_seq_len_cached: # growth
|
345 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
|
346 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
347 |
+
self.max_seq_len_cached = seq_len
|
348 |
+
|
349 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
350 |
+
# This .to() is needed if the model has been moved to a device after being initialized (because
|
351 |
+
# the buffer is automatically moved, but not the original copy)
|
352 |
+
self.original_inv_freq = self.original_inv_freq.to(device)
|
353 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
354 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
355 |
+
|
356 |
+
@torch.no_grad()
|
357 |
+
def forward(self, x, position_ids):
|
358 |
+
if "dynamic" in self.rope_type:
|
359 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
360 |
+
|
361 |
+
# Core RoPE block
|
362 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
363 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
364 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
365 |
+
device_type = x.device.type
|
366 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
367 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
368 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
369 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
370 |
+
cos = emb.cos()
|
371 |
+
sin = emb.sin()
|
372 |
+
|
373 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
374 |
+
cos = cos * self.attention_scaling
|
375 |
+
sin = sin * self.attention_scaling
|
376 |
+
|
377 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
378 |
+
|
379 |
+
|
380 |
+
QWEN2_START_DOCSTRING = r"""
|
381 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
382 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
383 |
+
etc.)
|
384 |
+
|
385 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
386 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
387 |
+
and behavior.
|
388 |
+
|
389 |
+
Parameters:
|
390 |
+
config ([`Qwen2Config`]):
|
391 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
392 |
+
load the weights associated with the model, only the configuration. Check out the
|
393 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
394 |
+
"""
|
395 |
+
|
396 |
+
|
397 |
+
@add_start_docstrings(
|
398 |
+
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
399 |
+
QWEN2_START_DOCSTRING,
|
400 |
+
)
|
401 |
+
class Qwen2PreTrainedModel(PreTrainedModel):
|
402 |
+
config_class = Qwen2Config
|
403 |
+
base_model_prefix = "model"
|
404 |
+
supports_gradient_checkpointing = True
|
405 |
+
_no_split_modules = ["Qwen2DecoderLayer"]
|
406 |
+
_skip_keys_device_placement = ["past_key_values"]
|
407 |
+
_supports_flash_attn_2 = True
|
408 |
+
_supports_sdpa = True
|
409 |
+
_supports_flex_attn = True
|
410 |
+
_supports_cache_class = True
|
411 |
+
_supports_quantized_cache = True
|
412 |
+
_supports_static_cache = True
|
413 |
+
_supports_attention_backend = True
|
414 |
+
|
415 |
+
def _init_weights(self, module):
|
416 |
+
std = self.config.initializer_range
|
417 |
+
if isinstance(module, nn.Linear):
|
418 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
419 |
+
if module.bias is not None:
|
420 |
+
module.bias.data.zero_()
|
421 |
+
elif isinstance(module, nn.Embedding):
|
422 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
423 |
+
if module.padding_idx is not None:
|
424 |
+
module.weight.data[module.padding_idx].zero_()
|
425 |
+
|
426 |
+
|
427 |
+
QWEN2_INPUTS_DOCSTRING = r"""
|
428 |
+
Args:
|
429 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
430 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
431 |
+
it.
|
432 |
+
|
433 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
434 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
435 |
+
|
436 |
+
[What are input IDs?](../glossary#input-ids)
|
437 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
438 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
439 |
+
|
440 |
+
- 1 for tokens that are **not masked**,
|
441 |
+
- 0 for tokens that are **masked**.
|
442 |
+
|
443 |
+
[What are attention masks?](../glossary#attention-mask)
|
444 |
+
|
445 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
446 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
447 |
+
|
448 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
449 |
+
`past_key_values`).
|
450 |
+
|
451 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
452 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
453 |
+
information on the default strategy.
|
454 |
+
|
455 |
+
- 1 indicates the head is **not masked**,
|
456 |
+
- 0 indicates the head is **masked**.
|
457 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
458 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
459 |
+
config.n_positions - 1]`.
|
460 |
+
|
461 |
+
[What are position IDs?](../glossary#position-ids)
|
462 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
463 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
464 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
465 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
466 |
+
|
467 |
+
Two formats are allowed:
|
468 |
+
- a [`~cache_utils.Cache`] instance, see our
|
469 |
+
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
470 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
471 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
472 |
+
cache format.
|
473 |
+
|
474 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
475 |
+
legacy cache format will be returned.
|
476 |
+
|
477 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
478 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
479 |
+
of shape `(batch_size, sequence_length)`.
|
480 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
481 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
482 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
483 |
+
model's internal embedding lookup matrix.
|
484 |
+
use_cache (`bool`, *optional*):
|
485 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
486 |
+
`past_key_values`).
|
487 |
+
output_attentions (`bool`, *optional*):
|
488 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
489 |
+
tensors for more detail.
|
490 |
+
output_hidden_states (`bool`, *optional*):
|
491 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
492 |
+
more detail.
|
493 |
+
return_dict (`bool`, *optional*):
|
494 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
495 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
496 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
497 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
498 |
+
the complete sequence length.
|
499 |
+
"""
|
500 |
+
|
501 |
+
|
502 |
+
@add_start_docstrings(
|
503 |
+
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
504 |
+
QWEN2_START_DOCSTRING,
|
505 |
+
)
|
506 |
+
class Qwen2Model(Qwen2PreTrainedModel):
|
507 |
+
"""
|
508 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
|
509 |
+
|
510 |
+
Args:
|
511 |
+
config: Qwen2Config
|
512 |
+
"""
|
513 |
+
|
514 |
+
def __init__(self, config: Qwen2Config):
|
515 |
+
super().__init__(config)
|
516 |
+
self.padding_idx = config.pad_token_id
|
517 |
+
self.vocab_size = config.vocab_size
|
518 |
+
|
519 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
520 |
+
self.layers = nn.ModuleList(
|
521 |
+
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
522 |
+
)
|
523 |
+
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
524 |
+
self.rotary_emb = Qwen2RotaryEmbedding(config=config)
|
525 |
+
self.gradient_checkpointing = False
|
526 |
+
|
527 |
+
# Initialize weights and apply final processing
|
528 |
+
self.post_init()
|
529 |
+
|
530 |
+
def get_input_embeddings(self):
|
531 |
+
return self.embed_tokens
|
532 |
+
|
533 |
+
def set_input_embeddings(self, value):
|
534 |
+
self.embed_tokens = value
|
535 |
+
|
536 |
+
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
537 |
+
def forward(
|
538 |
+
self,
|
539 |
+
input_ids: torch.LongTensor = None,
|
540 |
+
attention_mask: Optional[torch.Tensor] = None,
|
541 |
+
position_ids: Optional[torch.LongTensor] = None,
|
542 |
+
past_key_values: Optional[Cache] = None,
|
543 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
544 |
+
use_cache: Optional[bool] = None,
|
545 |
+
output_attentions: Optional[bool] = None,
|
546 |
+
output_hidden_states: Optional[bool] = None,
|
547 |
+
return_dict: Optional[bool] = None,
|
548 |
+
cache_position: Optional[torch.LongTensor] = None,
|
549 |
+
is_causal: bool = True,
|
550 |
+
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
551 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
552 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
553 |
+
output_hidden_states = (
|
554 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
555 |
+
)
|
556 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
557 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
558 |
+
|
559 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
560 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
561 |
+
|
562 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
563 |
+
logger.warning_once(
|
564 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
565 |
+
)
|
566 |
+
use_cache = False
|
567 |
+
|
568 |
+
if inputs_embeds is None:
|
569 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
570 |
+
|
571 |
+
if use_cache and past_key_values is None:
|
572 |
+
past_key_values = DynamicCache()
|
573 |
+
|
574 |
+
if cache_position is None:
|
575 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
576 |
+
cache_position = torch.arange(
|
577 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
578 |
+
)
|
579 |
+
|
580 |
+
if position_ids is None:
|
581 |
+
position_ids = cache_position.unsqueeze(0)
|
582 |
+
|
583 |
+
causal_mask = self._update_causal_mask(
|
584 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
585 |
+
)
|
586 |
+
|
587 |
+
hidden_states = inputs_embeds
|
588 |
+
|
589 |
+
# create position embeddings to be shared across the decoder layers
|
590 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
591 |
+
|
592 |
+
# decoder layers
|
593 |
+
all_hidden_states = () if output_hidden_states else None
|
594 |
+
all_self_attns = () if output_attentions else None
|
595 |
+
|
596 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
597 |
+
if output_hidden_states:
|
598 |
+
all_hidden_states += (hidden_states,)
|
599 |
+
|
600 |
+
if self.gradient_checkpointing and self.training:
|
601 |
+
layer_outputs = self._gradient_checkpointing_func(
|
602 |
+
decoder_layer.__call__,
|
603 |
+
hidden_states,
|
604 |
+
causal_mask,
|
605 |
+
position_ids,
|
606 |
+
past_key_values,
|
607 |
+
output_attentions,
|
608 |
+
use_cache,
|
609 |
+
cache_position,
|
610 |
+
position_embeddings,
|
611 |
+
is_causal,
|
612 |
+
)
|
613 |
+
else:
|
614 |
+
layer_outputs = decoder_layer(
|
615 |
+
hidden_states,
|
616 |
+
attention_mask=causal_mask,
|
617 |
+
position_ids=position_ids,
|
618 |
+
past_key_value=past_key_values,
|
619 |
+
output_attentions=output_attentions,
|
620 |
+
use_cache=use_cache,
|
621 |
+
cache_position=cache_position,
|
622 |
+
position_embeddings=position_embeddings,
|
623 |
+
is_causal=is_causal,
|
624 |
+
**flash_attn_kwargs,
|
625 |
+
)
|
626 |
+
|
627 |
+
hidden_states = layer_outputs[0]
|
628 |
+
|
629 |
+
if output_attentions:
|
630 |
+
all_self_attns += (layer_outputs[1],)
|
631 |
+
|
632 |
+
hidden_states = self.norm(hidden_states)
|
633 |
+
|
634 |
+
# add hidden states from the last decoder layer
|
635 |
+
if output_hidden_states:
|
636 |
+
all_hidden_states += (hidden_states,)
|
637 |
+
|
638 |
+
output = BaseModelOutputWithPast(
|
639 |
+
last_hidden_state=hidden_states,
|
640 |
+
past_key_values=past_key_values if use_cache else None,
|
641 |
+
hidden_states=all_hidden_states,
|
642 |
+
attentions=all_self_attns,
|
643 |
+
)
|
644 |
+
return output if return_dict else output.to_tuple()
|
645 |
+
|
646 |
+
def _update_causal_mask(
|
647 |
+
self,
|
648 |
+
attention_mask: torch.Tensor,
|
649 |
+
input_tensor: torch.Tensor,
|
650 |
+
cache_position: torch.Tensor,
|
651 |
+
past_key_values: Cache,
|
652 |
+
output_attentions: bool,
|
653 |
+
):
|
654 |
+
if self.config._attn_implementation == "flash_attention_2":
|
655 |
+
if attention_mask is not None and past_key_values is not None:
|
656 |
+
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
|
657 |
+
if is_padding_right:
|
658 |
+
raise ValueError(
|
659 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
660 |
+
" this may lead to unexpected behaviour for Flash Attention version of Qwen2. Make sure to "
|
661 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
662 |
+
)
|
663 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
664 |
+
return attention_mask
|
665 |
+
return None
|
666 |
+
|
667 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
668 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
669 |
+
# to infer the attention mask.
|
670 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
671 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
672 |
+
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
|
673 |
+
|
674 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
675 |
+
if (
|
676 |
+
self.config._attn_implementation == "sdpa"
|
677 |
+
and not (using_static_cache or using_sliding_window_cache)
|
678 |
+
and not output_attentions
|
679 |
+
):
|
680 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
681 |
+
attention_mask,
|
682 |
+
inputs_embeds=input_tensor,
|
683 |
+
past_key_values_length=past_seen_tokens,
|
684 |
+
sliding_window=self.config.sliding_window,
|
685 |
+
is_training=self.training,
|
686 |
+
):
|
687 |
+
return None
|
688 |
+
|
689 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
690 |
+
min_dtype = torch.finfo(dtype).min
|
691 |
+
sequence_length = input_tensor.shape[1]
|
692 |
+
# SlidingWindowCache or StaticCache
|
693 |
+
if using_sliding_window_cache or using_static_cache:
|
694 |
+
target_length = past_key_values.get_max_cache_shape()
|
695 |
+
# DynamicCache or no cache
|
696 |
+
else:
|
697 |
+
target_length = (
|
698 |
+
attention_mask.shape[-1]
|
699 |
+
if isinstance(attention_mask, torch.Tensor)
|
700 |
+
else past_seen_tokens + sequence_length + 1
|
701 |
+
)
|
702 |
+
|
703 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
704 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
705 |
+
attention_mask,
|
706 |
+
sequence_length=sequence_length,
|
707 |
+
target_length=target_length,
|
708 |
+
dtype=dtype,
|
709 |
+
device=device,
|
710 |
+
cache_position=cache_position,
|
711 |
+
batch_size=input_tensor.shape[0],
|
712 |
+
config=self.config,
|
713 |
+
past_key_values=past_key_values,
|
714 |
+
)
|
715 |
+
|
716 |
+
if (
|
717 |
+
self.config._attn_implementation == "sdpa"
|
718 |
+
and attention_mask is not None
|
719 |
+
and attention_mask.device.type in ["cuda", "xpu"]
|
720 |
+
and not output_attentions
|
721 |
+
):
|
722 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
723 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
724 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
725 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
726 |
+
|
727 |
+
return causal_mask
|
728 |
+
|
729 |
+
@staticmethod
|
730 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
731 |
+
attention_mask: torch.Tensor,
|
732 |
+
sequence_length: int,
|
733 |
+
target_length: int,
|
734 |
+
dtype: torch.dtype,
|
735 |
+
device: torch.device,
|
736 |
+
cache_position: torch.Tensor,
|
737 |
+
batch_size: int,
|
738 |
+
config: Qwen2Config,
|
739 |
+
past_key_values: Cache,
|
740 |
+
):
|
741 |
+
"""
|
742 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
743 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
744 |
+
|
745 |
+
Args:
|
746 |
+
attention_mask (`torch.Tensor`):
|
747 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
748 |
+
sequence_length (`int`):
|
749 |
+
The sequence length being processed.
|
750 |
+
target_length (`int`):
|
751 |
+
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
752 |
+
dtype (`torch.dtype`):
|
753 |
+
The dtype to use for the 4D attention mask.
|
754 |
+
device (`torch.device`):
|
755 |
+
The device to plcae the 4D attention mask on.
|
756 |
+
cache_position (`torch.Tensor`):
|
757 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
758 |
+
batch_size (`torch.Tensor`):
|
759 |
+
Batch size.
|
760 |
+
config (`Qwen2Config`):
|
761 |
+
The model's configuration class
|
762 |
+
past_key_values (`Cache`):
|
763 |
+
The cache class that is being used currently to generate
|
764 |
+
"""
|
765 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
766 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
767 |
+
causal_mask = attention_mask
|
768 |
+
else:
|
769 |
+
min_dtype = torch.finfo(dtype).min
|
770 |
+
causal_mask = torch.full(
|
771 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
772 |
+
)
|
773 |
+
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
774 |
+
if config.sliding_window is not None:
|
775 |
+
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
|
776 |
+
# the check is needed to verify is current checkpoint was trained with sliding window or not
|
777 |
+
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
|
778 |
+
sliding_attend_mask = torch.arange(target_length, device=device) <= (
|
779 |
+
cache_position.reshape(-1, 1) - config.sliding_window
|
780 |
+
)
|
781 |
+
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
|
782 |
+
causal_mask *= diagonal_attend_mask
|
783 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
784 |
+
if attention_mask is not None:
|
785 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
786 |
+
if attention_mask.shape[-1] > target_length:
|
787 |
+
attention_mask = attention_mask[:, :target_length]
|
788 |
+
mask_length = attention_mask.shape[-1]
|
789 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
790 |
+
causal_mask.device
|
791 |
+
)
|
792 |
+
padding_mask = padding_mask == 0
|
793 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
794 |
+
padding_mask, min_dtype
|
795 |
+
)
|
796 |
+
return causal_mask
|
797 |
+
|
798 |
+
|
799 |
+
class KwargsForCausalLM(FlashAttentionKwargs, ): ...
|
800 |
+
|
801 |
+
|
802 |
+
class Qwen2ForCausalLM(Qwen2PreTrainedModel, MDMGenerationMixin):
|
803 |
+
_tied_weights_keys = ["lm_head.weight"]
|
804 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
805 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
806 |
+
|
807 |
+
def __init__(self, config):
|
808 |
+
super().__init__(config)
|
809 |
+
self.model = Qwen2Model(config)
|
810 |
+
self.vocab_size = config.vocab_size
|
811 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
812 |
+
|
813 |
+
# Initialize weights and apply final processing
|
814 |
+
self.post_init()
|
815 |
+
|
816 |
+
def get_input_embeddings(self):
|
817 |
+
return self.model.embed_tokens
|
818 |
+
|
819 |
+
def set_input_embeddings(self, value):
|
820 |
+
self.model.embed_tokens = value
|
821 |
+
|
822 |
+
def get_output_embeddings(self):
|
823 |
+
return self.lm_head
|
824 |
+
|
825 |
+
def set_output_embeddings(self, new_embeddings):
|
826 |
+
self.lm_head = new_embeddings
|
827 |
+
|
828 |
+
def set_decoder(self, decoder):
|
829 |
+
self.model = decoder
|
830 |
+
|
831 |
+
def get_decoder(self):
|
832 |
+
return self.model
|
833 |
+
|
834 |
+
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
835 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
836 |
+
def forward(
|
837 |
+
self,
|
838 |
+
input_ids: torch.LongTensor = None,
|
839 |
+
attention_mask: Optional[torch.Tensor] = None,
|
840 |
+
position_ids: Optional[torch.LongTensor] = None,
|
841 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
842 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
843 |
+
labels: Optional[torch.LongTensor] = None,
|
844 |
+
mask_ratio: Optional[torch.FloatTensor]=None,
|
845 |
+
use_cache: Optional[bool] = None,
|
846 |
+
output_attentions: Optional[bool] = None,
|
847 |
+
output_hidden_states: Optional[bool] = None,
|
848 |
+
return_dict: Optional[bool] = None,
|
849 |
+
cache_position: Optional[torch.LongTensor] = None,
|
850 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
851 |
+
is_causal: bool = True,
|
852 |
+
**kwargs: Unpack[KwargsForCausalLM],
|
853 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
854 |
+
r"""
|
855 |
+
Args:
|
856 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
857 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
858 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
859 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
860 |
+
|
861 |
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
862 |
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
863 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
864 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
865 |
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
866 |
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
867 |
+
|
868 |
+
Returns:
|
869 |
+
|
870 |
+
Example:
|
871 |
+
|
872 |
+
```python
|
873 |
+
>>> from transformers import AutoTokenizer, Qwen2ForCausalLM
|
874 |
+
|
875 |
+
>>> model = Qwen2ForCausalLM.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")
|
876 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")
|
877 |
+
|
878 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
879 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
880 |
+
|
881 |
+
>>> # Generate
|
882 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
883 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
884 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
885 |
+
```"""
|
886 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
887 |
+
output_hidden_states = (
|
888 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
889 |
+
)
|
890 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
891 |
+
|
892 |
+
if not get_parallel_state().sp_enabled and labels is not None:
|
893 |
+
# Shift so that tokens < n predict n
|
894 |
+
labels = labels[..., 1:].contiguous()
|
895 |
+
labels = labels.view(-1)
|
896 |
+
if (
|
897 |
+
position_ids is not None
|
898 |
+
and position_ids.size(0) == 1
|
899 |
+
and not (torch.diff(position_ids, dim=-1) >= 0).all()
|
900 |
+
):
|
901 |
+
position_ids_ = position_ids.flatten()
|
902 |
+
indices_q = torch.arange(position_ids_.size(0), device=position_ids_.device, dtype=torch.int32)
|
903 |
+
cu_seq_lens = torch.cat(
|
904 |
+
(
|
905 |
+
indices_q[position_ids_ == 0],
|
906 |
+
torch.tensor(position_ids_.size(), device=position_ids_.device, dtype=torch.int32),
|
907 |
+
)
|
908 |
+
)
|
909 |
+
labels[cu_seq_lens[1:-1] - 1] = IGNORE_INDEX
|
910 |
+
if mask_ratio is not None:
|
911 |
+
is_causal = False
|
912 |
+
mask_ratio = mask_ratio[..., 1:].contiguous()
|
913 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
914 |
+
outputs = self.model(
|
915 |
+
input_ids=input_ids,
|
916 |
+
attention_mask=attention_mask,
|
917 |
+
position_ids=position_ids,
|
918 |
+
past_key_values=past_key_values,
|
919 |
+
inputs_embeds=inputs_embeds,
|
920 |
+
use_cache=use_cache,
|
921 |
+
output_attentions=output_attentions,
|
922 |
+
output_hidden_states=output_hidden_states,
|
923 |
+
return_dict=return_dict,
|
924 |
+
cache_position=cache_position,
|
925 |
+
is_causal=is_causal,
|
926 |
+
**kwargs,
|
927 |
+
)
|
928 |
+
|
929 |
+
hidden_states = outputs[0]
|
930 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
931 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
932 |
+
hidden_states = hidden_states[:, slice_indices, :]
|
933 |
+
|
934 |
+
loss = None
|
935 |
+
logits = None
|
936 |
+
if labels is not None:
|
937 |
+
labels = labels.view(-1) # flatten label
|
938 |
+
if is_liger_kernel_available():
|
939 |
+
if mask_ratio is not None:
|
940 |
+
loss_fct = LigerFusedLinearCrossEntropyLoss(reduction="none",ignore_index=IGNORE_INDEX)
|
941 |
+
if not get_parallel_state().sp_enabled:
|
942 |
+
# Shift so that tokens < n predict n
|
943 |
+
hidden_states = hidden_states[..., :-1, :].contiguous()
|
944 |
+
loss = loss_fct(
|
945 |
+
self.lm_head.weight,
|
946 |
+
hidden_states.view(-1, self.config.hidden_size),
|
947 |
+
labels
|
948 |
+
)
|
949 |
+
path_loss = (-loss).exp().detach() * loss
|
950 |
+
loss = loss + path_loss
|
951 |
+
loss_mask = labels != IGNORE_INDEX
|
952 |
+
loss = (loss * loss_mask * (1/mask_ratio)).sum() / (loss_mask.sum() + 1e-8)
|
953 |
+
else:
|
954 |
+
loss_fct = LigerFusedLinearCrossEntropyLoss(reduction="mean")
|
955 |
+
if not get_parallel_state().sp_enabled:
|
956 |
+
# Shift so that tokens < n predict n
|
957 |
+
hidden_states = hidden_states[..., :-1, :].contiguous()
|
958 |
+
hidden_states = hidden_states.view(-1, self.config.hidden_size)
|
959 |
+
loss = loss_fct(self.lm_head.weight, hidden_states, labels)
|
960 |
+
else:
|
961 |
+
if mask_ratio is not None:
|
962 |
+
loss_fct = torch.nn.CrossEntropyLoss(reduction="none")
|
963 |
+
logits = self.lm_head(hidden_states)
|
964 |
+
logits = logits.view(-1, self.vocab_size)
|
965 |
+
loss = loss_fct(logits, labels.view(-1))
|
966 |
+
path_loss = (-loss).exp().detach() * loss
|
967 |
+
loss = loss + path_loss
|
968 |
+
loss_mask = labels != IGNORE_INDEX
|
969 |
+
loss = (loss * loss_mask * (1/mask_ratio)).sum() / (loss_mask.sum() + 1e-8)
|
970 |
+
else:
|
971 |
+
loss_fct = torch.nn.CrossEntropyLoss(reduction="mean")
|
972 |
+
logits = self.lm_head(hidden_states)
|
973 |
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
974 |
+
logits = logits.float()
|
975 |
+
if not get_parallel_state().sp_enabled:
|
976 |
+
# Shift so that tokens < n predict n
|
977 |
+
logits = logits[..., :-1, :].contiguous()
|
978 |
+
|
979 |
+
# Flatten the tokens
|
980 |
+
logits = logits.view(-1, self.vocab_size)
|
981 |
+
loss = loss_fct(logits, labels)
|
982 |
+
|
983 |
+
if get_parallel_state().sp_enabled:
|
984 |
+
num_valid_tokens = (labels != IGNORE_INDEX).sum()
|
985 |
+
loss = reduce_sequence_parallel_loss(loss, num_valid_tokens)
|
986 |
+
else:
|
987 |
+
logits = self.lm_head(hidden_states)
|
988 |
+
|
989 |
+
if not return_dict:
|
990 |
+
output = (logits,) + outputs[1:]
|
991 |
+
return (loss,) + output if loss is not None else output
|
992 |
+
|
993 |
+
return CausalLMOutputWithPast(
|
994 |
+
loss=loss,
|
995 |
+
logits=logits,
|
996 |
+
past_key_values=outputs.past_key_values,
|
997 |
+
hidden_states=outputs.hidden_states,
|
998 |
+
attentions=outputs.attentions,
|
999 |
+
)
|
1000 |
+
|
1001 |
+
|
1002 |
+
|
1003 |
+
|
1004 |
+
import torch
|
1005 |
+
from tqdm import tqdm
|
1006 |
+
from typing import Callable, Tuple, Any
|
1007 |
+
|
1008 |
+
|
1009 |
+
def topk_masking(scores: torch.Tensor, cutoff_len: torch.Tensor, mode: str = "lowest") -> torch.Tensor:
|
1010 |
+
"""Generate a mask selecting the top-k lowest or highest elements per row."""
|
1011 |
+
sorted_scores = scores.sort(dim=-1, descending=(mode == "highest")).values
|
1012 |
+
cutoff = sorted_scores.gather(dim=-1, index=cutoff_len)
|
1013 |
+
return (scores >= cutoff) if mode == "highest" else (scores < cutoff)
|
1014 |
+
|
1015 |
+
|
1016 |
+
def sample_categorical(
|
1017 |
+
logits: torch.Tensor, temperature: float = 1.0, noise_scale: float = 1.0
|
1018 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
1019 |
+
"""
|
1020 |
+
Sample from a categorical distribution with optional Gumbel noise.
|
1021 |
+
Returns sampled tokens, their scores, and the noised logits.
|
1022 |
+
"""
|
1023 |
+
logits = logits.to(torch.float64)
|
1024 |
+
if temperature > 0:
|
1025 |
+
gumbel_noise = -torch.log(-torch.log(torch.rand_like(logits) + 1e-8) + 1e-8)
|
1026 |
+
logits = logits / temperature + noise_scale * gumbel_noise
|
1027 |
+
log_probs = logits.log_softmax(dim=-1)
|
1028 |
+
scores, tokens = log_probs.max(dim=-1)
|
1029 |
+
return tokens, scores.to(logits.dtype), logits.to(logits.dtype)
|
1030 |
+
|
1031 |
+
|
1032 |
+
@torch.inference_mode()
|
1033 |
+
@torch.amp.autocast(device_type="cuda", dtype=torch.float16)
|
1034 |
+
def p2_sampling(
|
1035 |
+
xt: torch.Tensor,
|
1036 |
+
model: Any,
|
1037 |
+
mask_id: int,
|
1038 |
+
num_steps: int,
|
1039 |
+
tau: float = 1.0,
|
1040 |
+
kappa_fn: Callable[[float], float] = lambda t: t,
|
1041 |
+
eta: float = 1.0,
|
1042 |
+
**kwargs
|
1043 |
+
) -> torch.Tensor:
|
1044 |
+
"""
|
1045 |
+
P2 Sampling implementation for discrete diffusion models.
|
1046 |
+
Reference: https://arxiv.org/pdf/2502.03540
|
1047 |
+
"""
|
1048 |
+
dt = 1 / num_steps
|
1049 |
+
fix_mask = (xt != mask_id)
|
1050 |
+
|
1051 |
+
for i in tqdm(range(1, num_steps + 1)):
|
1052 |
+
t = i * dt
|
1053 |
+
kappa_t = kappa_fn(t)
|
1054 |
+
|
1055 |
+
logits = model(xt).double()
|
1056 |
+
last_mask = (xt == mask_id)
|
1057 |
+
unmask_t = ~last_mask & ~fix_mask
|
1058 |
+
|
1059 |
+
x0, score, _ = sample_categorical(logits, temperature=tau)
|
1060 |
+
score = score.masked_fill(fix_mask, float("inf"))
|
1061 |
+
score[unmask_t] *= eta
|
1062 |
+
|
1063 |
+
num_to_mask = ((~fix_mask).sum(dim=1, keepdim=True).float() * (1 - kappa_t)).long()
|
1064 |
+
to_mask = topk_masking(score, num_to_mask, mode="lowest")
|
1065 |
+
|
1066 |
+
xt[to_mask] = mask_id
|
1067 |
+
mask_2_x0 = last_mask & ~to_mask
|
1068 |
+
xt[mask_2_x0] = x0[mask_2_x0]
|
1069 |
+
|
1070 |
+
xt[xt == mask_id] = x0[xt == mask_id]
|
1071 |
+
return xt
|
1072 |
+
|
1073 |
+
|
1074 |
+
|
1075 |
+
if is_liger_kernel_available():
|
1076 |
+
apply_rotary_pos_emb = liger_rotary_pos_emb
|
1077 |
+
Qwen2RMSNorm = LigerRMSNorm
|
1078 |
+
Qwen2MLP = LigerSwiGLUMLP
|
1079 |
+
logger.info_rank0("Apply liger kernel to Qwen2.")
|
1080 |
+
|
1081 |
+
|
1082 |
+
ModelClass = Qwen2ForCausalLM
|
1083 |
+
|
1084 |
+
__all__ = ["Qwen2ForCausalLM", "Qwen2Model", "Qwen2PreTrainedModel"]
|
special_tokens_map.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"mask_token": {
|
25 |
+
"content": "<M>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
},
|
31 |
+
"pad_token": {
|
32 |
+
"content": "<|endoftext|>",
|
33 |
+
"lstrip": false,
|
34 |
+
"normalized": false,
|
35 |
+
"rstrip": false,
|
36 |
+
"single_word": false
|
37 |
+
}
|
38 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f3ead5ffbb2abfb9e51757b104af5174f59c994ff3b2ca715d344dc66ee1f4e
|
3 |
+
size 11422076
|
tokenizer_config.json
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<M>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": true
|
188 |
+
}
|
189 |
+
},
|
190 |
+
"additional_special_tokens": [
|
191 |
+
"<|im_start|>",
|
192 |
+
"<|im_end|>",
|
193 |
+
"<|object_ref_start|>",
|
194 |
+
"<|object_ref_end|>",
|
195 |
+
"<|box_start|>",
|
196 |
+
"<|box_end|>",
|
197 |
+
"<|quad_start|>",
|
198 |
+
"<|quad_end|>",
|
199 |
+
"<|vision_start|>",
|
200 |
+
"<|vision_end|>",
|
201 |
+
"<|vision_pad|>",
|
202 |
+
"<|image_pad|>",
|
203 |
+
"<|video_pad|>"
|
204 |
+
],
|
205 |
+
"bos_token": null,
|
206 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
207 |
+
"clean_up_tokenization_spaces": false,
|
208 |
+
"eos_token": "<|endoftext|>",
|
209 |
+
"errors": "replace",
|
210 |
+
"extra_special_tokens": {},
|
211 |
+
"mask_token": "<M>",
|
212 |
+
"model_max_length": 32768,
|
213 |
+
"pad_token": "<|endoftext|>",
|
214 |
+
"padding_side": "right",
|
215 |
+
"split_special_tokens": false,
|
216 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
217 |
+
"unk_token": null
|
218 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|