File size: 8,661 Bytes
fe7ddde 71a9da8 3568916 431731b 0ff7ad7 5740c78 d376aa9 ad487bb f87e09f e0bb0d4 29e28fa 5b7e5f3 e60e7d9 3dc1ded cdd958f d069961 8339cb4 9630a75 57fe742 b6b36de fd2ed1f 0977439 b88e106 c3e34a7 3bc3eb7 bb57552 d1e15bc d500601 e77734c 39cef7b c40c8d4 45d6ee5 9d569e7 e0fcf24 614a94a 34c6884 03b90ea 1a31c3b 779d359 f3765f2 7349089 c2f9266 b0c0515 d43747b f4a9622 0de6748 49011b5 963cfb1 5d73d0b 63158db 4ac510e 863a8ee 1615a20 eee76d8 238906a a094031 53761d4 e0565a7 3021d7b 2c4ff88 7c52b1b 39cf0aa cbaecc9 694156a 4bb913f dd53932 b0fc30b f05eafb 47898ea a54b868 798644e 25d7a9a 55ed48d 0ff87b5 1b61644 e39bf7c cc73e5f d10ab3b add9e97 9f43047 a8ff796 7adda31 d869023 68620b2 409d59e 59188f3 73a4a5e 71a9da8 5eea381 2edc584 6683c3a 4d7f6fd 7efefd6 86ea7fa 6367f5c 766941d 382b198 10c5d83 e422f85 2b93169 7bd0abf 7f453e0 4fbe457 638a95d b554e13 1eb55af ac0ad3b 911acce 5afa8ad 428031b a460439 d64e088 ec01119 51b57a9 f4ec72d 32bbddd 50c31ad 1a1e8cc fe7ddde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
---
tags: [model]
---
# Internal RAG CX Data Preprocessing Demo
A robust data preprocessing pipeline for Retrieval-Augmented Generation (RAG) and Context-Augmented Generation (CAG) systems, deployed on Hugging Face as a Model repository (free tier). Built with over 5 years of AI expertise since 2020, this demo focuses on cleaning and preparing call center datasets for enterprise-grade CX applications in SaaS, HealthTech, FinTech, and eCommerce. It integrates advanced data wrangling with Pandas, ensuring high-quality FAQs for downstream RAG/CAG pipelines, and is compatible with Amazon SageMaker and Azure AI for scalable modeling.
## Technical Architecture
### Data Preprocessing Pipeline
The core of this demo is a comprehensive data preprocessing pipeline designed to clean raw call center datasets:
- **Data Ingestion**:
- Parses CSVs with `pd.read_csv`, using `io.StringIO` for embedded data, with explicit `quotechar` and `escapechar` to handle complex strings.
- Handles datasets with columns: `call_id`, `question`, `answer`, `language`.
- **Junk Data Cleanup**:
- **Null Handling**: Drops rows with missing `question` or `answer` using `df.dropna()`.
- **Duplicate Removal**: Eliminates redundant FAQs via `df[~df['question'].duplicated()]`.
- **Short Entry Filtering**: Excludes questions <10 chars or answers <20 chars with `df[(df['question'].str.len() >= 10) & (df['answer'].str.len() >= 20)]`.
- **Malformed Detection**: Uses regex (`[!?]{2,}|(Invalid|N/A)`) to filter invalid questions.
- **Standardization**: Normalizes text (e.g., "mo" to "month") and fills missing `language` with "en".
- **Output**:
- Generates `cleaned_call_center_faqs.csv` for downstream modeling.
- Provides cleanup stats: nulls removed, duplicates removed, short entries filtered, malformed entries detected.
### Enterprise-Grade Modeling Compatibility
The cleaned dataset is optimized for:
- **Amazon SageMaker**: Ready for training BERT-based models (e.g., `bert-base-uncased`) for intent classification or FAQ retrieval, deployable via SageMaker JumpStart.
- **Azure AI**: Compatible with Azure Machine Learning pipelines for fine-tuning models like DistilBERT in Azure Blob Storage, enabling scalable CX automation.
- **LLM Integration**: Supports fine-tuning LLMs (e.g., `distilgpt2`) for generative tasks, leveraging your FastAPI experience for API-driven inference.
## Performance Monitoring and Visualization
The demo includes a performance monitoring suite:
- **Processing Time Tracking**: Measures data ingestion, cleaning, and output times using `time.perf_counter()`, reported in milliseconds.
- **Cleanup Metrics**: Tracks the number of nulls, duplicates, short entries, and malformed entries removed.
- **Visualization**: Uses Matplotlib to plot a bar chart (`cleanup_stats.png`):
- Bars: Number of entries removed per category (Nulls, Duplicates, Short, Malformed).
- Palette: Professional muted colors for enterprise aesthetics.
## Gradio Interface for Interactive Demo
The demo is accessible via Gradio, providing an interactive data preprocessing experience:
- **Input**: Upload a sample call center CSV or use the embedded demo dataset.
- **Outputs**:
- **Cleaned Dataset**: Download `cleaned_call_center_faqs.csv`.
- **Cleanup Stats**: Detailed breakdown (e.g., βCleaned FAQs: 6; removed 4 junk entries: 2 nulls, 1 duplicates, 1 short, 0 malformedβ).
- **Performance Plot**: Visual metrics for processing time and cleanup stats.
- **Styling**: Custom dark theme CSS (`#2a2a2a` background, blue buttons) for a sleek, enterprise-ready UI.
## Setup
- Clone this repository to a Hugging Face Model repository (free tier, public).
- Add `requirements.txt` with dependencies (`gradio==4.44.0`, `pandas==2.2.3`, `matplotlib==3.9.2`, etc.).
- Upload `app.py` (includes embedded demo dataset for seamless deployment).
- Configure to run with Python 3.9+, CPU hardware (no GPU).
## Usage
- **Upload CSV**: Provide a call center CSV in the Gradio UI, or use the default demo dataset.
- **Output**:
- **Cleaned Dataset**: Download the processed `cleaned_call_center_faqs.csv`.
- **Cleanup Stats**: βCleaned FAQs: 6; removed 4 junk entries: 2 nulls, 1 duplicates, 1 short, 0 malformedβ.
- **Performance Plot**: Visual metrics for processing time and cleanup stats.
**Example**:
- **Input CSV**: Sample dataset with 10 FAQs, including 2 nulls, 1 duplicate, 1 short entry.
- **Output**:
- Cleaned Dataset: 6 FAQs in `cleaned_call_center_faqs.csv`.
- Cleanup Stats: βCleaned FAQs: 6; removed 4 junk entries: 2 nulls, 1 duplicates, 1 short, 0 malformedβ.
- Plot: Processing Time (Ingestion: 50ms, Cleaning: 30ms, Output: 10ms), Cleanup Stats (Nulls: 2, Duplicates: 1, Short: 1, Malformed: 0).
## Technical Details
**Stack**:
- **Pandas**: Data wrangling and preprocessing for call center CSVs.
- **Gradio**: Interactive UI for real-time data preprocessing demos.
- **Matplotlib**: Performance visualization with bar charts.
- **FastAPI Compatibility**: Designed with API-driven preprocessing in mind, leveraging your experience with FastAPI for scalable deployments.
**Free Tier Optimization**: Lightweight with CPU-only dependencies, no GPU required.
**Extensibility**: Ready for integration with RAG/CAG pipelines, and cloud deployments on AWS Lambda or Azure Functions.
## Purpose
This demo showcases expertise in data preprocessing for AI-driven CX automation, focusing on call center data quality. Built on over 5 years of experience in AI, data engineering, and enterprise-grade deployments, it demonstrates the power of Pandas-based data cleaning for RAG/CAG pipelines, making it ideal for advanced CX solutions in call center environments.
## Latest Update
**Status Update**: Configuration missing in update.ini for ghostai1/internalRAGCX: Expected sections InternalragcxUpdate and InternalragcxEmojis - May 28, 2025 π
- - August 31, 2025 π
- - August 28, 2025 π
- - August 26, 2025 π
- - August 23, 2025 π
- - August 21, 2025 π
- - August 19, 2025 π
- - August 18, 2025 π
- - August 16, 2025 π
- - August 15, 2025 π
- - August 14, 2025 π
- - August 13, 2025 π
- - August 12, 2025 π
- - August 11, 2025 π
- - August 10, 2025 π
- - August 09, 2025 π
- - August 08, 2025 π
- - August 07, 2025 π
- - August 06, 2025 π
- - August 05, 2025 π
- - August 04, 2025 π
- - August 03, 2025 π
- - August 02, 2025 π
- - August 01, 2025 π
- - July 31, 2025 π
- - July 30, 2025 π
- - July 29, 2025 π
- - July 28, 2025 π
- - July 27, 2025 π
- - July 26, 2025 π
- - July 25, 2025 π
- - July 24, 2025 π
- - July 23, 2025 π
- - July 22, 2025 π
- - July 21, 2025 π
- - July 20, 2025 π
- - July 19, 2025 π
- - July 18, 2025 π
- - July 17, 2025 π
- - July 16, 2025 π
- - July 15, 2025 π
- - July 14, 2025 π
- - July 11, 2025 π
- - July 10, 2025 π
- - July 09, 2025 π
- - July 08, 2025 π
- - July 07, 2025 π
- - July 06, 2025 π
- - July 05, 2025 π
- - July 04, 2025 π
- - July 03, 2025 π
- - July 02, 2025 π
- - July 01, 2025 π
- - June 30, 2025 π
- - June 29, 2025 π
- - June 28, 2025 π
- - June 27, 2025 π
- - June 26, 2025 π
- - June 25, 2025 π
- - June 24, 2025 π
- - June 23, 2025 π
- - June 22, 2025 π
- - June 21, 2025 π
- - June 20, 2025 π
- - June 19, 2025 π
- - June 18, 2025 π
- - June 17, 2025 π
- - June 16, 2025 π
- - June 15, 2025 π
- - June 14, 2025 π
- - June 13, 2025 π
- - June 12, 2025 π
- - June 11, 2025 π
- - June 10, 2025 π
- - June 09, 2025 π
- - June 08, 2025 π
- - June 07, 2025 π
- - June 06, 2025 π
- - June 05, 2025 π
- - June 04, 2025 π
- - June 03, 2025 π
- - June 02, 2025 π
- - June 01, 2025 π
- - May 31, 2025 π
- - May 30, 2025 π
- - May 29, 2025 π
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Placeholder update text.
## Future Enhancements
- **Real-Time Streaming**: Add support for real-time data streaming from Kafka for live preprocessing.
- **FastAPI Deployment**: Expose preprocessing pipeline via FastAPI endpoints for production-grade use.
- **Advanced Validation**: Implement stricter data validation rules using machine learning-based outlier detection.
- **Cloud Integration**: Enhance compatibility with AWS Glue or Azure Data Factory for enterprise data pipelines.
**Website**: https://ghostainews.com/
**Discord**: https://discord.gg/BfA23aYz
|