from typing import Dict, List, Any import torch from torch import autocast from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler import base64 from io import BytesIO # set device device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device.type != 'cuda': raise ValueError("need to run on GPU") class EndpointHandler(): def __init__(self, path=""): # load the optimized model self.pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16) self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config) self.pipe = self.pipe.to(device) def __call__(self, data: Any) -> List[List[Dict[str, float]]]: """ Args: data (:obj:): includes the input data and the parameters for the inference. Return: A :obj:`dict`:. base64 encoded image """ inputs = data.pop("inputs", data) # hyperparamters num_inference_steps = data.pop("num_inference_steps", 25) guidance_scale = data.pop("guidance_scale", 7.5) negative_prompt = data.pop("negative_prompt", None) height = data.pop("height", None) width = data.pop("width", None) manual_seed = data.pop("manual_seed", -1) generator = torch.Generator(device).manual_seed(manual_seed) # run inference pipeline with autocast(device.type): image = self.pipe(inputs, generator=generator, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, num_images_per_prompt=1, negative_prompt=negative_prompt, height=height, width=width).images[0] # encode image as base 64 buffered = BytesIO() image.save(buffered, format="JPEG") img_str = base64.b64encode(buffered.getvalue()) # postprocess the prediction return {"image": img_str.decode()}