# $1 is the name of the scripts folder | |
# $2 are the tasks to run, seperated by comma | |
# $3 is the gpu ids that used for training, seperated by comma | |
# $4 is an optional argument that, if present, skips the check for finished tasks | |
IFS=',' read -ra arr <<< $3 | |
CUDA_VISIBLE_DEVICES=$4 | |
for gene in ${arr[@]} | |
do | |
echo "Begin "$gene | |
for subset in 1 2 4 6 | |
do | |
for seed in {0..4} | |
do | |
logdir=$(cat $1/$gene.subset.$subset.5fold/$gene.subset.$subset.fold.$seed.yaml | grep log_dir | sed 's/.*: //') | |
num_epochs=$(cat $1/$gene.subset.$subset.5fold/$gene.subset.$subset.fold.$seed.yaml | grep num_epochs | sed 's/.*: //') | |
data_file_train=$(cat $1/$gene.subset.$subset.5fold/$gene.subset.$subset.fold.$seed.yaml | grep data_file_train: | sed 's/.*: //') | |
# check if task has finished, unless the skip argument is present | |
if [ -f $logdir/FOLD.3/model.epoch.$num_epochs.pt ]; then | |
if [ ! -f $2/$gene/testing.subset.$subset.fold.$seed.4fold.csv ]; then | |
python -W ignore::UserWarning:torch_geometric.data.collate:147 train.py \ | |
--conf $1/$gene.subset.$subset.5fold/$gene.subset.$subset.fold.$seed.yaml \ | |
--mode interpret_4_fold --interpret-by both --out-dir $2/$gene/testing.subset.$subset.fold.$seed.4fold.csv | |
fi | |
if [ ! -f $2/$gene/training.subset.$subset.fold.$seed.4fold.csv ]; then | |
python -W ignore::UserWarning:torch_geometric.data.collate:147 train.py \ | |
--conf $1/$gene.subset.$subset.5fold/$gene.subset.$subset.fold.$seed.yaml \ | |
--data-file-test $data_file_train \ | |
--mode interpret_4_fold --interpret-by both --out-dir $2/$gene/training.subset.$subset.fold.$seed.4fold.csv | |
fi | |
fi | |
done | |
done | |
done | |