|
from typing import Dict, List, Any |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline |
|
import torch |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"Qwen/Qwen2-1.5B-Instruct", |
|
torch_dtype=torch.float16 if device == "cuda" else torch.float32, |
|
device_map="auto" |
|
) |
|
|
|
|
|
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", {}) |
|
|
|
|
|
if isinstance(inputs, str): |
|
inputs = [inputs] |
|
|
|
|
|
try: |
|
inputs = torch.tensor(inputs).cuda() if torch.cuda.is_available() else torch.tensor(inputs) |
|
except: |
|
pass |
|
|
|
|
|
prediction = self.pipeline(inputs, **parameters) |
|
|
|
return prediction |
|
|