test qwen
Browse files- handler.py +5 -7
- requirements.txt +0 -4
handler.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import torch
|
2 |
from typing import Dict, List, Any
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
4 |
|
@@ -6,13 +5,12 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
6 |
class EndpointHandler:
|
7 |
def __init__(self, path=""):
|
8 |
# load the model
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
10 |
model = AutoModelForCausalLM.from_pretrained(
|
11 |
-
"
|
12 |
-
device_map="cuda",
|
13 |
torch_dtype="auto",
|
14 |
-
|
15 |
-
)
|
16 |
# create inference pipeline
|
17 |
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
18 |
|
@@ -26,4 +24,4 @@ class EndpointHandler:
|
|
26 |
else:
|
27 |
prediction = self.pipeline(inputs)
|
28 |
# postprocess the prediction
|
29 |
-
return prediction
|
|
|
|
|
1 |
from typing import Dict, List, Any
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
3 |
|
|
|
5 |
class EndpointHandler:
|
6 |
def __init__(self, path=""):
|
7 |
# load the model
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct")
|
9 |
model = AutoModelForCausalLM.from_pretrained(
|
10 |
+
"Qwen/Qwen2-1.5B-Instruct",
|
|
|
11 |
torch_dtype="auto",
|
12 |
+
device_map="auto"
|
13 |
+
)
|
14 |
# create inference pipeline
|
15 |
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
16 |
|
|
|
24 |
else:
|
25 |
prediction = self.pipeline(inputs)
|
26 |
# postprocess the prediction
|
27 |
+
return prediction
|
requirements.txt
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
flash_attn==2.5.8
|
2 |
-
torch==2.3.1
|
3 |
-
accelerate==0.31.0
|
4 |
-
transformers==4.41.2
|
|
|
|
|
|
|
|
|
|