push updates to handler
Browse files- Phi-3-medium-128k-instruct-IQ2_XS.gguf +0 -3
- handler.py +18 -21
- requirements.txt +0 -2
Phi-3-medium-128k-instruct-IQ2_XS.gguf
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:8c769c4137173dd434c070e116e4b0599af2b12752ba4c7188a1bf8bf5372a55
|
3 |
-
size 4127405088
|
|
|
|
|
|
|
|
handler.py
CHANGED
@@ -1,33 +1,30 @@
|
|
1 |
-
from typing import Dict, List, Any
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
|
|
|
|
|
|
4 |
|
5 |
class EndpointHandler:
|
6 |
def __init__(self, path=""):
|
7 |
-
# load model
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
def __call__(self, data:
|
12 |
-
"""
|
13 |
-
Args:
|
14 |
-
data (:obj:):
|
15 |
-
includes the deserialized image file as PIL.Image
|
16 |
-
"""
|
17 |
-
# process input
|
18 |
inputs = data.pop("inputs", data)
|
19 |
parameters = data.pop("parameters", None)
|
20 |
|
21 |
-
# preprocess
|
22 |
-
input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids
|
23 |
-
|
24 |
# pass inputs with all kwargs in data
|
25 |
if parameters is not None:
|
26 |
-
|
27 |
else:
|
28 |
-
|
29 |
-
|
30 |
# postprocess the prediction
|
31 |
-
prediction
|
32 |
-
|
33 |
-
return [{"generated_text": prediction}]
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from typing import Dict, List, Any
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
4 |
+
|
5 |
|
6 |
class EndpointHandler:
|
7 |
def __init__(self, path=""):
|
8 |
+
# load the model
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct", trust_remote_code=True)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
"microsoft/Phi-3-mini-128k-instruct",
|
12 |
+
device_map="auto",
|
13 |
+
torch_dtype=torch.bfloat16,
|
14 |
+
device_map="cuda",
|
15 |
+
trust_remote_code=True
|
16 |
+
)
|
17 |
+
# create inference pipeline
|
18 |
+
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
19 |
|
20 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
inputs = data.pop("inputs", data)
|
22 |
parameters = data.pop("parameters", None)
|
23 |
|
|
|
|
|
|
|
24 |
# pass inputs with all kwargs in data
|
25 |
if parameters is not None:
|
26 |
+
prediction = self.pipeline(inputs, **parameters)
|
27 |
else:
|
28 |
+
prediction = self.pipeline(inputs)
|
|
|
29 |
# postprocess the prediction
|
30 |
+
return prediction
|
|
|
|
requirements.txt
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
transformers>=4.40
|
2 |
-
flash-attn
|
|
|
|
|
|