update endpoint
Browse files- handler.py +4 -6
handler.py
CHANGED
@@ -4,18 +4,16 @@ import torch
|
|
4 |
|
5 |
class EndpointHandler:
|
6 |
def __init__(self, path=""):
|
7 |
-
device = 0 if torch.cuda.is_available() else -1 # 0 for GPU, -1 for CPU
|
8 |
-
|
9 |
# Load the model
|
10 |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct")
|
11 |
model = AutoModelForCausalLM.from_pretrained(
|
12 |
"Qwen/Qwen2-1.5B-Instruct",
|
13 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
14 |
-
device_map="cuda" # for
|
15 |
)
|
16 |
-
|
17 |
-
# Create inference pipeline
|
18 |
-
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer
|
19 |
|
20 |
def __call__(self, data: Any) -> List[List[Dict[str, Any]]]:
|
21 |
inputs = data.pop("inputs", data)
|
|
|
4 |
|
5 |
class EndpointHandler:
|
6 |
def __init__(self, path=""):
|
|
|
|
|
7 |
# Load the model
|
8 |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct")
|
9 |
model = AutoModelForCausalLM.from_pretrained(
|
10 |
"Qwen/Qwen2-1.5B-Instruct",
|
11 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
12 |
+
device_map="cuda" if torch.cuda.is_available() else "auto" # Include device_map for correct device allocation
|
13 |
)
|
14 |
+
|
15 |
+
# Create inference pipeline without specifying the device
|
16 |
+
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
17 |
|
18 |
def __call__(self, data: Any) -> List[List[Dict[str, Any]]]:
|
19 |
inputs = data.pop("inputs", data)
|