update handler and add flash attention
Browse files- handler.py +5 -2
- requirements.txt +1 -0
handler.py
CHANGED
@@ -9,8 +9,6 @@ class EndpointHandler:
|
|
9 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct", trust_remote_code=True)
|
10 |
model = AutoModelForCausalLM.from_pretrained(
|
11 |
"microsoft/Phi-3-mini-128k-instruct",
|
12 |
-
torch_dtype=torch.bfloat16,
|
13 |
-
device_map="cuda",
|
14 |
trust_remote_code=True
|
15 |
)
|
16 |
# create inference pipeline
|
@@ -18,6 +16,11 @@ class EndpointHandler:
|
|
18 |
|
19 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
20 |
inputs = data.pop("inputs", data)
|
|
|
|
|
|
|
|
|
|
|
21 |
parameters = data.pop("parameters", None)
|
22 |
|
23 |
# pass inputs with all kwargs in data
|
|
|
9 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct", trust_remote_code=True)
|
10 |
model = AutoModelForCausalLM.from_pretrained(
|
11 |
"microsoft/Phi-3-mini-128k-instruct",
|
|
|
|
|
12 |
trust_remote_code=True
|
13 |
)
|
14 |
# create inference pipeline
|
|
|
16 |
|
17 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
18 |
inputs = data.pop("inputs", data)
|
19 |
+
|
20 |
+
for key in ['stop_sequences', 'watermark', 'stop']:
|
21 |
+
if key in inputs:
|
22 |
+
del inputs[key]
|
23 |
+
|
24 |
parameters = data.pop("parameters", None)
|
25 |
|
26 |
# pass inputs with all kwargs in data
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
flash-attn==latest
|