hanxunh commited on
Commit
003da18
·
verified ·
1 Parent(s): a5e5fe6

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +62 -5
README.md CHANGED
@@ -1,11 +1,68 @@
1
  ---
2
  library_name: XTransferBench
 
 
3
  tags:
4
- - model_hub_mixin
5
  - pytorch_model_hub_mixin
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  ---
7
 
8
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
9
- - Code: [More Information Needed]
10
- - Paper: [More Information Needed]
11
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: XTransferBench
3
+ license: mit
4
+ pipeline_tag: zero-shot-classification
5
  tags:
6
+ - not-for-all-audiences
7
  - pytorch_model_hub_mixin
8
+ - model_hub_mixin
9
+ ---
10
+
11
+
12
+ # X-Transfer Attacks: Towards Super Transferable Adversarial Attacks on CLIP
13
+ <div align="center">
14
+ <a href="https://" target="_blank"><img src="https://img.shields.io/badge/arXiv-b5212f.svg?logo=arxiv" alt="arXiv"></a>
15
+ </div>
16
+
17
+ Baseline attacker [GD-UAP](https://arxiv.org/abs/1801.08092) used ICML2025 paper ["X-Transfer Attacks: Towards Super Transferable Adversarial Attacks on CLIP"](https://)
18
+
19
+ ---
20
+
21
+ ## X-TransferBench
22
+ X-TransferBench is an open-source benchmark that provides a comprehensive collection of UAPs/TUAPs capable of achieving universal adversarial transferability. These UAPs can simultaneously **transfer across data, domains, models**, and **tasks**. Essentially, they represent perturbations that can transform any sample into an adversarial example, effective against any model and for any task.
23
+
24
+ ## Model Details
25
+
26
+ - Surrogate Model: ResNet
27
+ - Surrogate Dataset:
28
+ - Threat Model: L_inf_eps=12/255
29
+ - Perturbation Size: 3 x 224 x 224
30
+
31
+ ---
32
+ ## Model Usage
33
+
34
+ ```python
35
+ from XTransferBench import attacker
36
+
37
+ attacker = XTransferBench.zoo.load_attacker("linf_non_targeted", "gd_uap_resnet_with_data")
38
+ images = # torch.Tensor [b, 3, h, w], values should be between 0 and 1
39
+ adv_images = attacker(images) # adversarial examples
40
+ ```
41
+
42
  ---
43
 
44
+ ## Citation
45
+ If you use this model in your work, please cite the accompanying paper:
46
+
47
+
48
+ ```
49
+ @article{mopuri2018generalizable,
50
+ title={Generalizable data-free objective for crafting universal adversarial perturbations},
51
+ author={Mopuri, Konda Reddy and Ganeshan, Aditya and Babu, R Venkatesh},
52
+ journal={TPAMI},
53
+ year={2018},
54
+ }
55
+ ```
56
+
57
+
58
+ ```
59
+ @inproceedings{
60
+ huang2025xtransfer,
61
+ title={X-Transfer Attacks: Towards Super Transferable Adversarial Attacks on CLIP},
62
+ author={Hanxun Huang and Sarah Erfani and Yige Li and Xingjun Ma and James Bailey},
63
+ booktitle={ICML},
64
+ year={2025},
65
+ }
66
+
67
+ ```
68
+