create ReadMe.md
Browse files
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- greengerong/leetcode
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
base_model:
|
7 |
+
- codellama/CodeLlama-7b-Instruct-hf
|
8 |
+
pipeline_tag: text2text-generation
|
9 |
+
---
|
10 |
+
|
11 |
+
## π§ Fine-tuned CodeLlama on LeetCode Problems
|
12 |
+
|
13 |
+
**This model is a fine-tuned version of [`codellama/CodeLlama-7b-Instruct-hf`](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) on the [`greengerong/leetcode`](https://huggingface.co/datasets/greengerong/leetcode) dataset. It has been instruction-tuned to generate Python solutions from LeetCode-style problem descriptions.**
|
14 |
+
---
|
15 |
+
|
16 |
+
## π¦ Model Formats Available
|
17 |
+
|
18 |
+
- **Transformers-compatible (`.safetensors`)** β for use via π€ Transformers.
|
19 |
+
- **GGUF (`.gguf`)** β for use via [llama.cpp](https://github.com/ggerganov/llama.cpp), including `llama-server`, `llama-cpp-python`, and other compatible tools.
|
20 |
+
|
21 |
+
---
|
22 |
+
|
23 |
+
## π Example Usage (Transformers)
|
24 |
+
|
25 |
+
```python
|
26 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
27 |
+
|
28 |
+
model_id = "your-username/codellama-leetcode-finetuned"
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
30 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
31 |
+
|
32 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
33 |
+
|
34 |
+
prompt = """You are an AI assistant. Solve the following problem:
|
35 |
+
|
36 |
+
Given an array of integers, return indices of the two numbers such that they add up to a specific target.
|
37 |
+
|
38 |
+
## Solution
|
39 |
+
"""
|
40 |
+
|
41 |
+
result = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7)
|
42 |
+
print(result[0]["generated_text"])
|
43 |
+
```
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
## βοΈ Usage with `llama.cpp`
|
48 |
+
|
49 |
+
You can run the model using tools in the [`llama.cpp`](https://github.com/ggerganov/llama.cpp) ecosystem. Make sure you have the `.gguf` version of the model (e.g., `codellama-leetcode.gguf`).
|
50 |
+
|
51 |
+
### π Using `llama-cpp-python`
|
52 |
+
|
53 |
+
Install:
|
54 |
+
|
55 |
+
```bash
|
56 |
+
pip install llama-cpp-python
|
57 |
+
```
|
58 |
+
Then use:
|
59 |
+
|
60 |
+
```
|
61 |
+
from llama_cpp import Llama
|
62 |
+
|
63 |
+
llm = Llama(
|
64 |
+
model_path="codellama-leetcode.gguf",
|
65 |
+
n_ctx=4096,
|
66 |
+
n_gpu_layers=99 # adjust based on your GPU
|
67 |
+
)
|
68 |
+
|
69 |
+
prompt = """### Problem
|
70 |
+
Given an array of integers, return indices of the two numbers such that they add up to a specific target.
|
71 |
+
|
72 |
+
## Solution
|
73 |
+
"""
|
74 |
+
|
75 |
+
output = llm(prompt, max_tokens=256)
|
76 |
+
print(output["choices"][0]["text"])
|
77 |
+
```
|
78 |
+
|
79 |
+
|
80 |
+
### π₯οΈ Using llama-server
|
81 |
+
|
82 |
+
Start the server:
|
83 |
+
|
84 |
+
```
|
85 |
+
llama-server --model codellama-leetcode.gguf --port 8000 --n_gpu_layers 99
|
86 |
+
```
|
87 |
+
|
88 |
+
Then send a request:
|
89 |
+
|
90 |
+
```
|
91 |
+
curl http://localhost:8000/completion -d '{
|
92 |
+
"prompt": "### Problem\nGiven an array of integers...\n\n## Solution\n",
|
93 |
+
"n_predict": 256
|
94 |
+
}'
|
95 |
+
```
|
96 |
+
|
97 |
+
|