Update README.md
Browse files
README.md
CHANGED
|
@@ -8,6 +8,251 @@ tags: []
|
|
| 8 |
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
## Model Details
|
| 13 |
|
|
|
|
| 8 |
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
|
| 10 |
|
| 11 |
+
## ONNX export code
|
| 12 |
+
|
| 13 |
+
```py
|
| 14 |
+
import os
|
| 15 |
+
import torch
|
| 16 |
+
from transformers import (
|
| 17 |
+
AutoProcessor,
|
| 18 |
+
Qwen2VLForConditionalGeneration,
|
| 19 |
+
DynamicCache,
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class PatchedQwen2VLForConditionalGeneration(Qwen2VLForConditionalGeneration):
|
| 24 |
+
def forward(self, *args):
|
| 25 |
+
inputs_embeds, attention_mask, position_ids, *past_key_values_args = args
|
| 26 |
+
|
| 27 |
+
# Convert past_key_values list to DynamicCache
|
| 28 |
+
if len(past_key_values_args) == 0:
|
| 29 |
+
past_key_values = None
|
| 30 |
+
else:
|
| 31 |
+
past_key_values = DynamicCache(self.config.num_hidden_layers)
|
| 32 |
+
for i in range(self.config.num_hidden_layers):
|
| 33 |
+
key = past_key_values_args.pop(0)
|
| 34 |
+
value = past_key_values_args.pop(0)
|
| 35 |
+
past_key_values.update(key_states=key, value_states=value, layer_idx=i)
|
| 36 |
+
|
| 37 |
+
o = super().forward(
|
| 38 |
+
inputs_embeds=inputs_embeds,
|
| 39 |
+
attention_mask=attention_mask,
|
| 40 |
+
position_ids=position_ids,
|
| 41 |
+
past_key_values=past_key_values,
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
flattened_past_key_values_outputs = {
|
| 45 |
+
"logits": o.logits,
|
| 46 |
+
}
|
| 47 |
+
output_past_key_values: DynamicCache = o.past_key_values
|
| 48 |
+
for i, (key, value) in enumerate(
|
| 49 |
+
zip(output_past_key_values.key_cache, output_past_key_values.value_cache)
|
| 50 |
+
):
|
| 51 |
+
flattened_past_key_values_outputs[f"present.{i}.key"] = key
|
| 52 |
+
flattened_past_key_values_outputs[f"present.{i}.value"] = value
|
| 53 |
+
|
| 54 |
+
return flattened_past_key_values_outputs
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
# Constants
|
| 58 |
+
OUTPUT_FOLDER = "output"
|
| 59 |
+
EMBEDDING_MODEL_NAME = "embed_tokens.onnx"
|
| 60 |
+
TEXT_MODEL_NAME = "decoder_model_merged.onnx"
|
| 61 |
+
VISION_MODEL_NAME = "vision_encoder.onnx"
|
| 62 |
+
TEMP_MODEL_OUTPUT_FOLDER = os.path.join(OUTPUT_FOLDER, "temp")
|
| 63 |
+
FINAL_MODEL_OUTPUT_FOLDER = os.path.join(OUTPUT_FOLDER, "onnx")
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# Load model and processor
|
| 67 |
+
model_id = "hf-internal-testing/tiny-random-Qwen2VLForConditionalGeneration"
|
| 68 |
+
model = PatchedQwen2VLForConditionalGeneration.from_pretrained(model_id).eval()
|
| 69 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
# Save model configs and processor
|
| 73 |
+
model.config.save_pretrained(OUTPUT_FOLDER)
|
| 74 |
+
model.generation_config.save_pretrained(OUTPUT_FOLDER)
|
| 75 |
+
processor.save_pretrained(OUTPUT_FOLDER)
|
| 76 |
+
os.makedirs(TEMP_MODEL_OUTPUT_FOLDER, exist_ok=True)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
# Configuration values
|
| 80 |
+
## Text model
|
| 81 |
+
text_config = model.config
|
| 82 |
+
num_heads = text_config.num_attention_heads
|
| 83 |
+
num_key_value_heads = text_config.num_key_value_heads
|
| 84 |
+
head_dim = text_config.hidden_size // num_heads
|
| 85 |
+
num_layers = text_config.num_hidden_layers
|
| 86 |
+
hidden_size = text_config.hidden_size
|
| 87 |
+
|
| 88 |
+
## Vision model
|
| 89 |
+
vision_config = model.config.vision_config
|
| 90 |
+
channel = vision_config.in_chans
|
| 91 |
+
temporal_patch_size = vision_config.temporal_patch_size
|
| 92 |
+
patch_size = vision_config.spatial_patch_size
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# Dummy input sizes
|
| 96 |
+
grid_t, grid_h, grid_w = [1, 16, 16]
|
| 97 |
+
batch_size = 1
|
| 98 |
+
sequence_length = 16
|
| 99 |
+
num_channels = 3
|
| 100 |
+
past_sequence_length = 0
|
| 101 |
+
|
| 102 |
+
image_batch_size = 1 # TODO: Add support for > 1 images
|
| 103 |
+
assert image_batch_size == 1
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
# Dummy inputs
|
| 107 |
+
## Embedding inputs
|
| 108 |
+
input_ids = torch.randint(
|
| 109 |
+
0, model.config.vocab_size, (batch_size, sequence_length), dtype=torch.int64
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
## Text inputs
|
| 113 |
+
dummy_past_key_values_kwargs = {
|
| 114 |
+
f"past_key_values.{i}.{key}": torch.zeros(
|
| 115 |
+
batch_size,
|
| 116 |
+
num_key_value_heads,
|
| 117 |
+
past_sequence_length,
|
| 118 |
+
head_dim,
|
| 119 |
+
dtype=torch.float32,
|
| 120 |
+
)
|
| 121 |
+
for i in range(num_layers)
|
| 122 |
+
for key in ["key", "value"]
|
| 123 |
+
}
|
| 124 |
+
inputs_embeds = torch.ones(
|
| 125 |
+
batch_size, sequence_length, hidden_size, dtype=torch.float32
|
| 126 |
+
)
|
| 127 |
+
attention_mask = torch.ones(batch_size, sequence_length, dtype=torch.int64)
|
| 128 |
+
position_ids = torch.ones(3, batch_size, sequence_length, dtype=torch.int64)
|
| 129 |
+
|
| 130 |
+
## Vision inputs
|
| 131 |
+
grid_thw = torch.tensor(
|
| 132 |
+
[[grid_t, grid_h, grid_w]] * image_batch_size, dtype=torch.int64
|
| 133 |
+
)
|
| 134 |
+
pixel_values = torch.randn(
|
| 135 |
+
image_batch_size * grid_t * grid_h * grid_w,
|
| 136 |
+
channel * temporal_patch_size * patch_size * patch_size,
|
| 137 |
+
dtype=torch.float32,
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
# ONNX Exports
|
| 142 |
+
## Embedding model
|
| 143 |
+
embedding_inputs = dict(input_ids=input_ids)
|
| 144 |
+
embedding_inputs_positional = tuple(embedding_inputs.values())
|
| 145 |
+
model.model.embed_tokens(*embedding_inputs_positional) # Test forward pass
|
| 146 |
+
EMBED_TOKENS_OUTPUT_PATH = os.path.join(TEMP_MODEL_OUTPUT_FOLDER, EMBEDDING_MODEL_NAME)
|
| 147 |
+
torch.onnx.export(
|
| 148 |
+
model.model.embed_tokens,
|
| 149 |
+
args=embedding_inputs_positional,
|
| 150 |
+
f=EMBED_TOKENS_OUTPUT_PATH,
|
| 151 |
+
export_params=True,
|
| 152 |
+
opset_version=14,
|
| 153 |
+
do_constant_folding=True,
|
| 154 |
+
input_names=list(embedding_inputs.keys()),
|
| 155 |
+
output_names=["inputs_embeds"],
|
| 156 |
+
dynamic_axes={
|
| 157 |
+
"input_ids": {0: "batch_size", 1: "sequence_length"},
|
| 158 |
+
"inputs_embeds": {0: "batch_size", 1: "sequence_length"},
|
| 159 |
+
},
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
## Text model
|
| 163 |
+
text_inputs = dict(
|
| 164 |
+
inputs_embeds=inputs_embeds,
|
| 165 |
+
attention_mask=attention_mask,
|
| 166 |
+
position_ids=position_ids,
|
| 167 |
+
**dummy_past_key_values_kwargs,
|
| 168 |
+
)
|
| 169 |
+
text_inputs_positional = tuple(text_inputs.values())
|
| 170 |
+
text_outputs = model.forward(*text_inputs_positional) # Test forward pass
|
| 171 |
+
TEXT_MODEL_OUTPUT_PATH=os.path.join(TEMP_MODEL_OUTPUT_FOLDER, TEXT_MODEL_NAME)
|
| 172 |
+
torch.onnx.export(
|
| 173 |
+
model,
|
| 174 |
+
args=text_inputs_positional,
|
| 175 |
+
f=TEXT_MODEL_OUTPUT_PATH,
|
| 176 |
+
export_params=True,
|
| 177 |
+
opset_version=14,
|
| 178 |
+
do_constant_folding=True,
|
| 179 |
+
input_names=list(text_inputs.keys()),
|
| 180 |
+
output_names=["logits"]
|
| 181 |
+
+ [f"present.{i}.{key}" for i in range(num_layers) for key in ["key", "value"]],
|
| 182 |
+
dynamic_axes={
|
| 183 |
+
"inputs_embeds": {0: "batch_size", 1: "sequence_length"},
|
| 184 |
+
"attention_mask": {0: "batch_size", 1: "sequence_length"},
|
| 185 |
+
"position_ids": {1: "batch_size", 2: "sequence_length"},
|
| 186 |
+
**{
|
| 187 |
+
f"past_key_values.{i}.{key}": {0: "batch_size", 2: "past_sequence_length"}
|
| 188 |
+
for i in range(num_layers)
|
| 189 |
+
for key in ["key", "value"]
|
| 190 |
+
},
|
| 191 |
+
"logits": {0: "batch_size", 1: "sequence_length"},
|
| 192 |
+
**{
|
| 193 |
+
f"present.{i}.{key}": {0: "batch_size", 2: "past_sequence_length + 1"}
|
| 194 |
+
for i in range(num_layers)
|
| 195 |
+
for key in ["key", "value"]
|
| 196 |
+
},
|
| 197 |
+
},
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
## Vision model
|
| 201 |
+
vision_inputs = dict(
|
| 202 |
+
pixel_values=pixel_values,
|
| 203 |
+
grid_thw=grid_thw,
|
| 204 |
+
)
|
| 205 |
+
vision_inputs_positional = tuple(vision_inputs.values())
|
| 206 |
+
vision_outputs = model.visual.forward(*vision_inputs_positional) # Test forward pass
|
| 207 |
+
VISION_ENCODER_OUTPUT_PATH = os.path.join(TEMP_MODEL_OUTPUT_FOLDER, VISION_MODEL_NAME)
|
| 208 |
+
torch.onnx.export(
|
| 209 |
+
model.visual,
|
| 210 |
+
args=vision_inputs_positional,
|
| 211 |
+
f=VISION_ENCODER_OUTPUT_PATH,
|
| 212 |
+
export_params=True,
|
| 213 |
+
opset_version=14,
|
| 214 |
+
do_constant_folding=True,
|
| 215 |
+
input_names=list(vision_inputs.keys()),
|
| 216 |
+
output_names=["image_features"],
|
| 217 |
+
dynamic_axes={
|
| 218 |
+
"pixel_values": {
|
| 219 |
+
0: "batch_size * grid_t * grid_h * grid_w",
|
| 220 |
+
1: "channel * temporal_patch_size * patch_size * patch_size",
|
| 221 |
+
},
|
| 222 |
+
"grid_thw": {0: "batch_size"},
|
| 223 |
+
"image_features": {0: "batch_size * grid_t * grid_h * grid_w"},
|
| 224 |
+
},
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
# Post-processing
|
| 229 |
+
import onnx
|
| 230 |
+
import onnxslim
|
| 231 |
+
from optimum.onnx.graph_transformations import check_and_save_model
|
| 232 |
+
|
| 233 |
+
os.makedirs(FINAL_MODEL_OUTPUT_FOLDER, exist_ok=True)
|
| 234 |
+
for name in (EMBEDDING_MODEL_NAME, TEXT_MODEL_NAME, VISION_MODEL_NAME):
|
| 235 |
+
temp_model_path = os.path.join(TEMP_MODEL_OUTPUT_FOLDER, name)
|
| 236 |
+
|
| 237 |
+
## Shape inference (especially needed by the vision encoder)
|
| 238 |
+
onnx.shape_inference.infer_shapes_path(temp_model_path, check_type=True, strict_mode=True)
|
| 239 |
+
|
| 240 |
+
## Attempt to optimize the model with onnxslim
|
| 241 |
+
try:
|
| 242 |
+
model = onnxslim.slim(temp_model_path)
|
| 243 |
+
except Exception as e:
|
| 244 |
+
print(f"Failed to slim {model}: {e}")
|
| 245 |
+
model = onnx.load(temp_model_path)
|
| 246 |
+
|
| 247 |
+
## Save model
|
| 248 |
+
final_model_path = os.path.join(FINAL_MODEL_OUTPUT_FOLDER, name)
|
| 249 |
+
check_and_save_model(model, final_model_path)
|
| 250 |
+
|
| 251 |
+
## Cleanup
|
| 252 |
+
import shutil
|
| 253 |
+
shutil.rmtree(TEMP_MODEL_OUTPUT_FOLDER)
|
| 254 |
+
```
|
| 255 |
+
|
| 256 |
|
| 257 |
## Model Details
|
| 258 |
|