--- license: mit language: - ar - da - de - el - en - es - fi - fr - he - hi - it - ja - ko - ms - nl - no - pl - pt - ru - sv - sw - tr - zh pipeline_tag: text-to-speech tags: - text-to-speech - speech - speech-generation - voice-cloning - multilingual-tts library_name: chatterbox --- cb-big2

Chatterbox TTS (Persian Model Added)

Listen to Demo Samples Open in HF Spaces Insight on Podos
Made with ❤️ by resemble-logo-horizontal
**09/04 🔥 Introducing Chatterbox Multilingual in 23 Languages!** We're excited to introduce **Chatterbox** and **Chatterbox Multilingual**, [Resemble AI's](https://resemble.ai) production-grade open source TTS models. Chatterbox Multilingual supports **Arabic, Danish, German, Greek, English, Spanish, Finnish, French, Hebrew, Hindi, Italian, Japanese, Korean, Malay, Dutch, Norwegian, Polish, Portuguese, Russian, Swedish, Swahili, Turkish, Chinese** out of the box. Licensed under MIT, Chatterbox has been benchmarked against leading closed-source systems like ElevenLabs, and is consistently preferred in side-by-side evaluations. Whether you're working on memes, videos, games, or AI agents, Chatterbox brings your content to life. It's also the first open source TTS model to support **emotion exaggeration control**, a powerful feature that makes your voices stand out. Try it now on our [Hugging Face Gradio app.](https://huggingface.co/spaces/ResembleAI/Chatterbox) If you like the model but need to scale or tune it for higher accuracy, check out our competitively priced TTS service (link). It delivers reliable performance with ultra-low latency of sub 200ms—ideal for production use in agents, applications, or interactive media. # Key Details - Multilingual, zero-shot TTS supporting 23 languages - SoTA zeroshot English TTS - 0.5B Llama backbone - Unique exaggeration/intensity control - Ultra-stable with alignment-informed inference - Trained on 0.5M hours of cleaned data - Watermarked outputs - Easy voice conversion script - [Outperforms ElevenLabs](https://podonos.com/resembleai/chatterbox) # Tips - **General Use (TTS and Voice Agents):** - The default settings (`exaggeration=0.5`, `cfg=0.5`) work well for most prompts. - If the reference speaker has a fast speaking style, lowering `cfg` to around `0.3` can improve pacing. - **Expressive or Dramatic Speech:** - Try lower `cfg` values (e.g. `~0.3`) and increase `exaggeration` to around `0.7` or higher. - Higher `exaggeration` tends to speed up speech; reducing `cfg` helps compensate with slower, more deliberate pacing. ***Note:*** Ensure that the reference clip matches the specified language tag. Otherwise, language transfer outputs may inherit the accent of the reference clip’s language. ***To mitigate this, set the CFG weight to 0.*** # Installation ``` pip install chatterbox-tts ``` # Usage ```python import torchaudio as ta from chatterbox.tts import ChatterboxTTS model = ChatterboxTTS.from_pretrained(device="cuda") text = "Ezreal and Jinx teamed up with Ahri, Yasuo, and Teemo to take down the enemy's Nexus in an epic late-game pentakill." wav = model.generate(text) ta.save("test-1.wav", wav, model.sr) # If you want to synthesize with a different voice, specify the audio prompt AUDIO_PROMPT_PATH="YOUR_FILE.wav" wav = model.generate(text, audio_prompt_path=AUDIO_PROMPT_PATH) ta.save("test-2.wav", wav, model.sr) ``` # Multilingual Quickstart ```python import torchaudio as ta from chatterbox.mtl_tts import ChatterboxMultilingualTTS multilingual_model = ChatterboxMultilingualTTS.from_pretrained(device="cuda") french_text = "Bonjour, comment ça va? Ceci est le modèle de synthèse vocale multilingue Chatterbox, il prend en charge 23 langues." wav_french = multilingual_model.generate(french_text, language_id="fr") ta.save("test-french.wav", wav_french, model.sr) chinese_text = "你好,今天天气真不错,希望你有一个愉快的周末。" wav_chinese = multilingual_model.generate(chinese_text, language_id="zh") ta.save("test-chinese.wav", wav_chinese, model.sr) ``` See `example_tts.py` for more examples. # Acknowledgements - [Cosyvoice](https://github.com/FunAudioLLM/CosyVoice) - [HiFT-GAN](https://github.com/yl4579/HiFTNet) - [Llama 3](https://github.com/meta-llama/llama3) # Built-in PerTh Watermarking for Responsible AI Every audio file generated by Chatterbox includes [Resemble AI's Perth (Perceptual Threshold) Watermarker](https://github.com/resemble-ai/perth) - imperceptible neural watermarks that survive MP3 compression, audio editing, and common manipulations while maintaining nearly 100% detection accuracy. # Disclaimer Don't use this model to do bad things. Prompts are sourced from freely available data on the internet. # Use EN ```sh uv init --python 3.11 uv sync source .venv/bin/activate git clone https://github.com/resemble-ai/chatterbox.git cd chatterbox # remove "gradio==5.44.1" and russian-text-stresser from pyproject.toml python -m pip install -e . # mac run: python example_for_mac.py ``` # use FA ```py #example_fa.py from chatterbox.mtl_tts import ChatterboxMultilingualTTS import torch import torchaudio as ta from safetensors.torch import load_file as load_safetensors from huggingface_hub import hf_hub_download, login import os # Detect device (Mac with M1/M2/M3/M4) device = "mps" if torch.backends.mps.is_available() else "cpu" map_location = torch.device(device) torch_load_original = torch.load def patched_torch_load(*args, **kwargs): if 'map_location' not in kwargs: kwargs['map_location'] = map_location return torch_load_original(*args, **kwargs) torch.load = patched_torch_load # Load the multilingual TTS model, making sure it uses the CPU multilingual_model = ChatterboxMultilingualTTS.from_pretrained(device) # read token token = "YOUR_TOKEN" login(token) # Define the model repo and file path model_repo = "Thomcles/Chatterbox-TTS-Persian-Farsi" file_name = "t3_fa.safetensors" # Define the cache directory (your custom local folder) cache_dir = "./cacheModel" # Create the cache directory if it doesn't exist os.makedirs(cache_dir, exist_ok=True) # Download the model weights to the specified cache directory file_path = hf_hub_download(repo_id=model_repo, filename=file_name, cache_dir=cache_dir) print(f"Model weights downloaded to: {file_path}") # Load the T3 model state dict for Persian, explicitly mapping to CPU # Use `torch.load` with map_location to ensure it loads on the CPU t3_state = load_safetensors(file_path, device='cpu') # Load the T3 model's state dict into the multilingual model and move it to the CPU multilingual_model.t3.load_state_dict(t3_state) multilingual_model.t3.to(device).eval() # Ensure it's on CPU # Define the Persian text you want to convert to speech persian_text = "سلام! به آزمایش تبدیل متن به گفتار خوش آمدید." # Generate the speech for the provided Persian text AUDIO_PROMPT_PATH = "target_voice.wav" wav_persian = multilingual_model.generate( persian_text, language_id=None, audio_prompt_path=AUDIO_PROMPT_PATH, exaggeration=0.5, cfg_weight=0.5 ) # Save the generated speech to a WAV file ta.save("test-fa.wav", wav_persian, multilingual_model.sr) print("Speech synthesis complete, saved as 'test-fa.wav'") ```