hylee
commited on
Commit
·
f776d9e
1
Parent(s):
c9e7917
clean up
Browse files- handler.py +1 -71
handler.py
CHANGED
|
@@ -31,7 +31,6 @@ class Utterance:
|
|
| 31 |
self.role = None
|
| 32 |
self.word_count = self.get_num_words()
|
| 33 |
self.timestamp = [starttime, endtime]
|
| 34 |
-
# self.unit_measure = endtime - starttime
|
| 35 |
self.unit_measure = None
|
| 36 |
self.aggregate_unit_measure = endtime
|
| 37 |
|
|
@@ -310,94 +309,25 @@ class EndpointHandler():
|
|
| 310 |
transcript.add_utterance(Utterance(**utt))
|
| 311 |
|
| 312 |
print("Running inference on %d examples..." % transcript.length())
|
| 313 |
-
# cpu_percent = psutil.cpu_percent()
|
| 314 |
logging.set_verbosity_info()
|
| 315 |
-
# logger = logging.get_logger("transformers")
|
| 316 |
-
# logger.info(f"CPU Usage before models loaded: {cpu_percent}%")
|
| 317 |
-
# mem_info = psutil.virtual_memory()
|
| 318 |
-
# used_mem = mem_info.used / (1024 ** 3) # Convert to gigabytes
|
| 319 |
-
# total_mem = mem_info.total / (1024 ** 3) # Convert to gigabytes
|
| 320 |
-
# logger.info(
|
| 321 |
-
# f"Used Memory before models loaded: {used_mem:.2f} GB, Total RAM: {total_mem:.2f} GB")
|
| 322 |
-
|
| 323 |
# Uptake
|
| 324 |
uptake_model = UptakeModel(
|
| 325 |
self.device, self.tokenizer, self.input_builder)
|
| 326 |
uptake_speaker = params.pop("uptake_speaker", None)
|
| 327 |
uptake_model.run_inference(transcript, min_prev_words=params['uptake_min_num_words'],
|
| 328 |
uptake_speaker=uptake_speaker)
|
| 329 |
-
|
| 330 |
-
# cpu_percent = psutil.cpu_percent()
|
| 331 |
-
# mem_info = psutil.virtual_memory()
|
| 332 |
-
# used_mem = mem_info.used / (1024 ** 3) # Convert to gigabytes
|
| 333 |
-
# total_mem = mem_info.total / (1024 ** 3) # Convert to gigabytes
|
| 334 |
-
# logger.info(
|
| 335 |
-
# f"Used Memory after model 1 loaded: {used_mem:.2f} GB, Total Mem: {total_mem:.2f} GB")
|
| 336 |
-
# logger.info(f"CPU Usage after model 1 loaded: {cpu_percent}%")
|
| 337 |
-
# del uptake_model
|
| 338 |
-
# cpu_percent = psutil.cpu_percent()
|
| 339 |
-
# mem_info = psutil.virtual_memory()
|
| 340 |
-
# used_mem = mem_info.used / (1024 ** 3) # Convert to gigabytes
|
| 341 |
-
# total_mem = mem_info.total / (1024 ** 3) # Convert to gigabytes
|
| 342 |
-
# logger.info(f"Used Memory after model 1 deleted: {used_mem:.2f} GB, Total Mem: {total_mem:.2f} GB")
|
| 343 |
-
# logger.info(f"CPU Usage after model 1 deleted: {cpu_percent}%")
|
| 344 |
# Reasoning
|
| 345 |
reasoning_model = ReasoningModel(
|
| 346 |
self.device, self.tokenizer, self.input_builder)
|
| 347 |
reasoning_model.run_inference(transcript)
|
| 348 |
-
|
| 349 |
-
# mem_info = psutil.virtual_memory()
|
| 350 |
-
# used_mem = mem_info.used / (1024 ** 3) # Convert to gigabytes
|
| 351 |
-
# total_mem = mem_info.total / (1024 ** 3) # Convert to gigabytes
|
| 352 |
-
# logger.info(
|
| 353 |
-
# f"Used Memory after model 2 loaded: {used_mem:.2f} GB, Total Mem: {total_mem:.2f} GB")
|
| 354 |
-
# logger.info(f"CPU Usage after model 2 loaded: {cpu_percent}%")
|
| 355 |
-
# # print(f"CPU Usage after model 2 loaded: {cpu_percent}%")
|
| 356 |
-
# # del reasoning_model
|
| 357 |
-
# cpu_percent = psutil.cpu_percent()
|
| 358 |
-
# mem_info = psutil.virtual_memory()
|
| 359 |
-
# used_mem = mem_info.used / (1024 ** 3) # Convert to gigabytes
|
| 360 |
-
# total_mem = mem_info.total / (1024 ** 3) # Convert to gigabytes
|
| 361 |
-
# logger.info(f"Used Memory after model 2 deleted: {used_mem:.2f} GB, Total Mem: {total_mem:.2f} GB")
|
| 362 |
-
# logger.info(f"CPU Usage after model 2 deleted: {cpu_percent}%")
|
| 363 |
-
# print(f"CPU Usage after model 2 deleted: {cpu_percent}%")
|
| 364 |
# Question
|
| 365 |
question_model = QuestionModel(
|
| 366 |
self.device, self.tokenizer, self.input_builder)
|
| 367 |
question_model.run_inference(transcript)
|
| 368 |
-
# cpu_percent = psutil.cpu_percent()
|
| 369 |
-
# logger.info(f"CPU Usage after model 3 loaded: {cpu_percent}%")
|
| 370 |
-
# mem_info = psutil.virtual_memory()
|
| 371 |
-
# used_mem = mem_info.used / (1024 ** 3) # Convert to gigabytes
|
| 372 |
-
# total_mem = mem_info.total / (1024 ** 3) # Convert to gigabytes
|
| 373 |
-
# logger.info(
|
| 374 |
-
# f"Used Memory after model 3 loaded: {used_mem:.2f} GB, Total Mem: {total_mem:.2f} GB")
|
| 375 |
-
# print(f"CPU Usage after model 3 loaded: {cpu_percent}%")
|
| 376 |
-
# del question_model
|
| 377 |
-
# cpu_percent = psutil.cpu_percent()
|
| 378 |
-
# logger.info(f"CPU Usage after model 3 deleted: {cpu_percent}%")
|
| 379 |
-
# mem_info = psutil.virtual_memory()
|
| 380 |
-
# used_mem = mem_info.used / (1024 ** 3) # Convert to gigabytes
|
| 381 |
-
# total_mem = mem_info.total / (1024 ** 3) # Convert to gigabytes
|
| 382 |
-
# logger.info(f"Used Memory after model 3 deleted: {used_mem:.2f} GB, Total Mem: {total_mem:.2f} GB")
|
| 383 |
-
# print(f"CPU Usage after model 3 deleted: {cpu_percent}%")
|
| 384 |
transcript.update_utterance_roles
|
| 385 |
talk_dist, talk_len = transcript.get_talk_distribution_and_length(uptake_speaker)
|
| 386 |
talk_timeline = transcript.get_talk_timeline()
|
| 387 |
word_cloud = transcript.get_word_cloud_dicts()
|
| 388 |
|
| 389 |
-
# return transcript.to_dict(), talk_dist, talk_len, talk_timeline, word_cloud
|
| 390 |
return talk_dist, talk_len, talk_timeline, word_cloud
|
| 391 |
-
|
| 392 |
-
# {
|
| 393 |
-
# "inputs": [
|
| 394 |
-
# {"uid": "1", "speaker": "Alice", "text": "How much is the fish?" },
|
| 395 |
-
# {"uid": "2", "speaker": "Bob", "text": "I do not know about the fish. Because you put a long side and it’s a long side. What do you think." },
|
| 396 |
-
# {"uid": "3", "speaker": "Alice", "text": "OK, thank you Bob." }
|
| 397 |
-
# ],
|
| 398 |
-
# "parameters": {
|
| 399 |
-
# "uptake_min_num_words": 5,
|
| 400 |
-
# "uptake_speaker": "Bob",
|
| 401 |
-
# "filename": "sample.csv"
|
| 402 |
-
# }
|
| 403 |
-
# }
|
|
|
|
| 31 |
self.role = None
|
| 32 |
self.word_count = self.get_num_words()
|
| 33 |
self.timestamp = [starttime, endtime]
|
|
|
|
| 34 |
self.unit_measure = None
|
| 35 |
self.aggregate_unit_measure = endtime
|
| 36 |
|
|
|
|
| 309 |
transcript.add_utterance(Utterance(**utt))
|
| 310 |
|
| 311 |
print("Running inference on %d examples..." % transcript.length())
|
|
|
|
| 312 |
logging.set_verbosity_info()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
# Uptake
|
| 314 |
uptake_model = UptakeModel(
|
| 315 |
self.device, self.tokenizer, self.input_builder)
|
| 316 |
uptake_speaker = params.pop("uptake_speaker", None)
|
| 317 |
uptake_model.run_inference(transcript, min_prev_words=params['uptake_min_num_words'],
|
| 318 |
uptake_speaker=uptake_speaker)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
# Reasoning
|
| 320 |
reasoning_model = ReasoningModel(
|
| 321 |
self.device, self.tokenizer, self.input_builder)
|
| 322 |
reasoning_model.run_inference(transcript)
|
| 323 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
# Question
|
| 325 |
question_model = QuestionModel(
|
| 326 |
self.device, self.tokenizer, self.input_builder)
|
| 327 |
question_model.run_inference(transcript)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
transcript.update_utterance_roles
|
| 329 |
talk_dist, talk_len = transcript.get_talk_distribution_and_length(uptake_speaker)
|
| 330 |
talk_timeline = transcript.get_talk_timeline()
|
| 331 |
word_cloud = transcript.get_word_cloud_dicts()
|
| 332 |
|
|
|
|
| 333 |
return talk_dist, talk_len, talk_timeline, word_cloud
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|