VideoSimpleQA / main_mcot.py
hzy's picture
Initial upload of all project files
608eb1a verified
import os
import json
import base64
import argparse
import time
import re
import traceback
from datetime import datetime
from functools import partial
import requests # Import requests library to download images from URLs
from openai import AzureOpenAI, OpenAI
from volcenginesdkarkruntime import Ark
import concurrent.futures
from tqdm import tqdm
# 1. New Agent System Prompt
# Defines the agent's role and principles, guiding it to use the "imagination" tool when visual evidence is insufficient.
IMAGINE_AGENT_SYSTEM_PROMPT = """
You are an intelligent AI assistant specializing in answering video question-answering problems through reasoning and imagination.
Your task is to answer a multiple-choice question based on an initial, limited set of video frames.
You will receive a few uniformly sampled frames to get a basic understanding of the video.
These frames may not contain all the visual evidence needed to directly answer the question.
If the provided frame information is insufficient, you must use the `imagine_frame` tool to generate new, imagined frames to fill in the visual gaps and aid your reasoning.
You can call this tool multiple times to construct a sequence of imagined events.
Your strategy should be:
1. Analyze the initial frames and the user's question.
2. Form a hypothesis about the missing content.
3. If you need more visual information, call the `imagine_frame` tool. Provide a text `prompt` describing the scene you want to imagine, and select a `reference_image_id` from existing frames. The `reference_image_id` MUST be one of the IDs explicitly provided to you in the conversation history (e.g., "Frame ID: X" or "New Frame ID: Y"). Do not invent or assume frame IDs.
4. Analyze the newly generated frame in conjunction with the existing ones.
5. Continue this process of reasoning and imagination until you are confident in your answer. Please ensure you have found or created the relevant visual cues before answering the question.
6. Each tool call can only generate one frame.
IMPORTANT: Your text `prompt` for image generation must be safe and general. Avoid descriptions that could be interpreted as sensitive, harmful, or explicit to prevent generation failures.
After your reasoning, provide the final answer in a JSON code block. The JSON object must contain a key "answer" with a value of one of 'A', 'B', 'C', or 'D'.
Your output must strictly follow this format:
<Your step-by-step reasoning process here, including why you chose to imagine a certain frame>
```json
{"answer": "X"}
```
Do not include any other text after the JSON code block.
"""
# 2. New Tool Schema for imagine_frame
# Defines the interface, parameters, and description for the `imagine_frame` tool.
IMAGINE_FRAME_TOOL_SCHEMA = {
"type": "function",
"function": {
"name": "imagine_frame",
"description": "When visual evidence is insufficient, generates a new image based on a text prompt and a reference image to help answer the question. Use it to imagine what might have happened between the provided frames.",
"parameters": {
"type": "object",
"properties": {
"reference_image_id": {
"type": "integer",
"description": "The ID of an existing frame to use as a style and content reference. It can be one of the original frames or a previously generated one.",
},
"prompt": {
"type": "string",
"description": "A detailed text description of the frame you want to imagine and generate.",
},
},
"required": ["reference_image_id", "prompt"],
},
},
}
# 3. Implementation of the `imagine_frame` tool
def imagine_frame(
reference_image_id: int,
prompt: str,
all_frame_paths: dict,
output_dir: str,
generation_count: int,
):
"""
Tool implementation: Calls an image generation model to create a new frame.
Args:
reference_image_id (int): The ID of the reference frame.
prompt (str): The text prompt for image generation.
all_frame_paths (dict): A dictionary containing IDs and paths of all currently available frames (original + generated).
output_dir (str): The directory to save the generated image.
generation_count (int): The current generation count, used for naming the file.
Returns:
str or None: The path of the newly generated image on success, otherwise None.
"""
print(f"\n[Tool Call] Imagining new frame with prompt: '{prompt}'")
ark_api_key = os.environ.get("ARK_API_KEY")
if not ark_api_key:
raise ValueError("Error: Environment variable ARK_API_KEY is not set.")
client = Ark(
base_url="https://ark.cn-beijing.volces.com/api/v3",
api_key=ark_api_key,
)
ref_image_path = all_frame_paths.get(reference_image_id)
if not ref_image_path or not os.path.exists(ref_image_path):
raise FileNotFoundError(f"Reference image ID not found: {reference_image_id}")
try:
# Encode the reference image to a Base64 Data URI
ref_image_b64 = encode_image(ref_image_path)
ref_image_data_uri = f"data:image/jpeg;base64,{ref_image_b64}"
imagesResponse = client.images.generate(
model="doubao-seedream-4-0-250828",
prompt=prompt,
image=ref_image_data_uri,
size="1024x1024", # Can be adjusted as needed, e.g., "2K"
response_format="url",
watermark=False,
)
image_url = imagesResponse.data[0].url
# Download the image from the URL
response = requests.get(image_url)
response.raise_for_status()
# Save the image to the specified directory
new_frame_filename = (
f"generated_frame_{generation_count}_ref_{reference_image_id}.jpg"
)
new_frame_path = os.path.join(output_dir, new_frame_filename)
with open(new_frame_path, "wb") as f:
f.write(response.content)
print(f"[Tool Success] Generated frame saved to: {new_frame_path}")
return new_frame_path
except Exception as e:
print(f"An error occurred during image generation or download: {e}")
traceback.print_exc()
return None
def parse_arguments():
"""Parse command-line arguments"""
parser = argparse.ArgumentParser(
description="Video QA Evaluation Framework with Imagine-and-Reason Agent"
)
parser.add_argument(
"--target-model",
"-tm",
type=str,
required=True,
help="The model to be evaluated (e.g., gpt-4o)",
)
parser.add_argument(
"--frames-path",
"-fp",
type=str,
required=True,
help="Absolute path to the root directory containing video frames.",
)
parser.add_argument(
"--output-path",
"-op",
type=str,
default="./generated_outputs",
help="Path to store generated images and results.",
)
parser.add_argument(
"--data-file",
"-df",
type=str,
required=True,
help="Absolute path to the evaluation dataset JSON file.",
)
parser.add_argument(
"--initial-frames-num",
"-ifn",
type=int,
default=8,
help="Number of initial uniformly sampled frames.",
)
parser.add_argument(
"--max-retry-times",
"-mr",
type=int,
default=10,
help="Maximum number of retries for failed API calls.",
)
parser.add_argument(
"--pool-processes",
"-pp",
type=int,
default=10,
help="Number of parallel processes.",
)
parser.add_argument(
"--base_url",
type=str,
required=True,
help="API Endpoint URL for the target model service.",
)
parser.add_argument(
"--api_key",
type=str,
required=True,
help="API Key for the target model service.",
)
return parser.parse_args()
def save_json_file(data, output_file):
"""Save data to a JSON file"""
with open(output_file, "w", encoding="utf-8") as f:
json.dump(data, f, indent=4, ensure_ascii=False)
def extract_json_from_response(response):
"""Extract JSON answer from the model's text response"""
if not response:
return None
match = re.search(r"```json\s*(\{.*?\})\s*```", response, re.DOTALL)
if match:
try:
return json.loads(match.group(1))
except (json.JSONDecodeError, IndexError):
return None
return None
def calculate_metrics(results):
"""Calculate various metrics from the evaluation results"""
valid_results = [r for r in results if "error" not in r]
total_samples = len(valid_results)
if total_samples == 0:
return {
"total_samples": 0,
"answered_samples": 0,
"correct_answers": 0,
"accuracy": 0.0,
}
answered_samples = sum(
1 for x in valid_results if x.get("model_answer") is not None
)
correct_answers = sum(1 for x in valid_results if x.get("is_correct"))
accuracy = correct_answers / answered_samples if answered_samples > 0 else 0.0
return {
"total_samples": total_samples,
"answered_samples": answered_samples,
"correct_answers": correct_answers,
"accuracy": accuracy,
}
def call_single_model(client, messages, model, item_id, max_retry_times, tools=None):
"""A single model API call with retry logic"""
params = {"model": model, "messages": messages, "max_tokens": 4096}
if tools:
params["tools"] = tools
params["tool_choice"] = "auto"
retry_times = 0
while retry_times < max_retry_times:
try:
completion = client.chat.completions.create(**params)
return completion.choices[0].message
except Exception as e:
retry_times += 1
print(
f"API call error (Item {item_id}): {str(e)}. Retrying ({retry_times}/{max_retry_times})..."
)
if retry_times == max_retry_times:
raise e
time.sleep(5)
def uniformly_sample_frames_and_encode(frames_dir, num_frames):
"""Uniformly sample a specified number of frames from a directory and encode them"""
if not os.path.isdir(frames_dir):
return [], {}
frame_files = sorted(
[f for f in os.listdir(frames_dir) if f.endswith(".jpg")],
key=lambda x: int(re.search(r"frame_(\d+)\.jpg", x).group(1)),
)
total_frames = len(frame_files)
if total_frames == 0:
return [], {}
if total_frames > num_frames:
indices = [int(i * total_frames / num_frames) for i in range(num_frames)]
sampled_files = [frame_files[i] for i in indices]
else:
sampled_files = frame_files
frame_path_map = {}
encoded_frames = []
for f in sampled_files:
path = os.path.join(frames_dir, f)
frame_id = int(re.search(r"frame_(\d+)\.jpg", f).group(1))
b64_image = encode_image(path)
# Send frame ID and image content as a pair
encoded_frames.append({"type": "text", "text": f"This is Frame ID: {frame_id}"})
encoded_frames.append(
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{b64_image}"},
}
)
frame_path_map[frame_id] = path
return encoded_frames, frame_path_map
def evaluate_single_item_agentic_imagination(
data_item,
initial_frames,
initial_frame_paths,
generated_images_dir,
target_model,
api_key,
base_url,
max_retry_times,
):
"""
Core logic for evaluating a single data item using the Imagine-and-Reason Agent.
"""
# 4. New Agent Loop
if "ark" in base_url:
client = Ark(base_url=base_url, api_key=api_key)
elif "aliyun" in base_url or "127.0.0.1" in base_url:
client = OpenAI(api_key=api_key, base_url=base_url)
else:
client = AzureOpenAI(
api_version="2023-05-15", api_key=api_key, azure_endpoint=base_url
)
tools = [IMAGINE_FRAME_TOOL_SCHEMA]
# Store paths of all available frames (initial + generated) in a dictionary for reference
available_frame_paths = initial_frame_paths.copy()
initial_prompt_content = [
{
"type": "text",
"text": "Here are the initial sampled video frames provided to you:",
},
*initial_frames,
{
"type": "text",
"text": f"Please answer the following question:\n{data_item['question']}",
},
]
messages = [
{"role": "system", "content": IMAGINE_AGENT_SYSTEM_PROMPT},
{"role": "user", "content": initial_prompt_content},
]
response_content = None
max_tool_calls = (
5 # Limit the number of times the agent can imagine to prevent infinite loops
)
generation_count = 0
for i in range(max_tool_calls):
response_message = call_single_model(
client,
messages,
target_model,
data_item["key"],
max_retry_times,
tools=tools,
)
if response_message is None:
return None
messages.append(response_message.model_dump(exclude_none=True))
if response_message.tool_calls:
tool_call = response_message.tool_calls[
0
] # Process one tool call at a time
function_name = tool_call.function.name
if function_name == "imagine_frame":
generation_count += 1
function_args = json.loads(tool_call.function.arguments)
new_frame_path = imagine_frame(
**function_args,
all_frame_paths=available_frame_paths,
output_dir=generated_images_dir,
generation_count=generation_count,
)
if new_frame_path:
# Create a unique ID for the newly generated frame
new_frame_id = (
max(available_frame_paths.keys())
if available_frame_paths
else 0
) + 1
available_frame_paths[new_frame_id] = new_frame_path
b64_image = encode_image(new_frame_path)
tool_response_content = [
{
"type": "text",
"text": f"Here is the frame you requested to imagine (New Frame ID: {new_frame_id}). Please use it to continue your reasoning.",
},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{b64_image}"},
},
]
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": json.dumps(
{"status": "success", "new_frame_id": new_frame_id}
),
}
)
messages.append({"role": "user", "content": tool_response_content})
else: # Tool execution failed
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": json.dumps(
{
"status": "error",
"message": "Failed to generate image.",
}
),
}
)
else: # No tool call means the model is ready to give a final answer
response_content = response_message.content
break
# If the max number of calls is reached without an answer, force a final response
if response_content is None and response_message:
final_prompt = "You have reached the maximum number of tool calls. Please provide a final answer in the specified JSON format based on the information you have gathered so far."
messages.append({"role": "user", "content": final_prompt})
final_response_message = call_single_model(
client, messages, target_model, data_item["key"], max_retry_times
)
if final_response_message:
messages.append(final_response_message.model_dump(exclude_none=True))
response_content = final_response_message.content
is_correct = False
model_answer_cleaned = None
parsed_json = extract_json_from_response(response_content)
if parsed_json and "answer" in parsed_json:
model_answer_cleaned = str(parsed_json["answer"]).strip().upper()
gold_answer = data_item["answer"].strip().upper()
if model_answer_cleaned == gold_answer:
is_correct = True
return {
**data_item,
"agent_conversation": messages,
"model_reasoning_and_answer": response_content,
"model_answer": model_answer_cleaned,
"is_correct": is_correct,
"generated_images_path": generated_images_dir, # 5. Store the path to intermediate generated images
}
def encode_image(image_path):
"""Encode an image file to a Base64 string"""
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
def process_single_data(data_item, args):
"""Worker function to process a single data item in parallel"""
item_key = data_item["key"]
try:
# Create a separate subfolder for each video's generated images
generated_images_dir = os.path.join(
args.output_path, "generated_images", item_key
)
os.makedirs(generated_images_dir, exist_ok=True)
specific_frames_path = os.path.join(args.frames_path, item_key)
initial_frames, initial_frame_paths = uniformly_sample_frames_and_encode(
specific_frames_path, args.initial_frames_num
)
if not initial_frames:
raise FileNotFoundError(f"Initial frames not found for item '{item_key}'")
result = evaluate_single_item_agentic_imagination(
data_item,
initial_frames,
initial_frame_paths,
generated_images_dir,
args.target_model,
args.api_key,
args.base_url,
args.max_retry_times,
)
return result
except Exception as e:
print(f"\nA critical error occurred while processing item {item_key}: {str(e)}")
traceback.print_exc()
return {
"key": item_key,
"uid": data_item.get("uid"),
"error": str(e),
"traceback": traceback.format_exc(),
}
def load_test_data(json_file):
"""Load test data from a JSON file"""
try:
with open(json_file, "r", encoding="utf-8") as f:
return json.load(f)
except FileNotFoundError:
print(f"Error: Data file not found: {json_file}")
exit(1)
except json.JSONDecodeError:
print(f"Error: JSON file is malformed: {json_file}")
exit(1)
def main():
"""Main function to orchestrate the entire evaluation flow"""
args = parse_arguments()
print("--- Video QA Imagine-and-Reason Agent Framework ---")
print(f"Evaluating Model: {args.target_model}")
print(f"Output Path: {args.output_path}")
print(f"Dataset: {args.data_file}")
print("---------------------------------")
# Create the main output directory
os.makedirs(args.output_path, exist_ok=True)
model_name_safe = args.target_model.replace("/", "_")
data_filename_base = os.path.splitext(os.path.basename(args.data_file))[0]
output_prefix = f"{model_name_safe}_{data_filename_base}_imagine_agent"
results_output_file = os.path.join(
args.output_path, f"{output_prefix}_results.json"
)
metrics_output_file = os.path.join(
args.output_path, f"{output_prefix}_metrics.json"
)
error_log_file = os.path.join(args.output_path, f"{output_prefix}_errors.log")
# The logic for resuming from a checkpoint can be added here, same as in the first script
all_test_data = load_test_data(args.data_file)
tasks_to_process = all_test_data
all_results = []
# Use ProcessPoolExecutor for parallel processing
with concurrent.futures.ProcessPoolExecutor(
max_workers=args.pool_processes
) as executor:
func = partial(process_single_data, args=args)
results_iterator = executor.map(func, tasks_to_process)
for result in tqdm(
results_iterator, total=len(tasks_to_process), desc="Processing Videos"
):
if result:
if "error" in result:
with open(error_log_file, "a", encoding="utf-8") as f:
f.write(
f"Error on item {result.get('key', 'N/A')}:\n Error: {result['error']}\n---\n"
)
all_results.append(result)
# Save results every 10 videos to prevent data loss from interruptions
if len(all_results) % 10 == 0:
save_json_file(all_results, results_output_file)
print("\n\nProcessing complete.")
# Save the final complete results
save_json_file(all_results, results_output_file)
print(f"Detailed results saved to: {results_output_file}")
# Calculate and save the final metrics
final_metrics = calculate_metrics(all_results)
save_json_file(final_metrics, metrics_output_file)
print(f"\nEvaluation metrics saved to: {metrics_output_file}")
print(json.dumps(final_metrics, indent=4))
if __name__ == "__main__":
# Before running this script, please ensure you have set the environment variable in your terminal:
# export ARK_API_KEY="YOUR_VOLCENGINE_ARK_API_KEY"
main()