--- license: apache-2.0 base_model: - ibm-granite/granite-3.3-8b-instruct --- # Micro-G3.3-8B-Instruct-1B **Model Summary:** Micro-G3.3-8B-Instruct-1B is a 1-billion parameter micro language model fine-tuned for reasoning and instruction-following capabilities. Built on top of Granite-3.3-8B-Instruct, with only 3 hidden layers, this model is trained to maximize performance and hardware compatibility at minimal compute cost. **Generation:** This is a simple example of how to use Micro-G3.3-8B-Instruct-1B model. Install the following libraries: ```shell pip install torch torchvision torchaudio pip install accelerate pip install transformers ``` Then, copy the snippet from the section that is relevant for your use case. ```python from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed import torch model_path="ibm-ai-platform/micro-g3.3-8b-instruct-1b" device="cuda" model = AutoModelForCausalLM.from_pretrained( model_path, device_map=device, torch_dtype=torch.bfloat16, ) tokenizer = AutoTokenizer.from_pretrained( model_path ) conv = [{"role": "user", "content":"What is your favorite color?"}] input_ids = tokenizer.apply_chat_template(conv, return_tensors="pt", thinking=True, return_dict=True, add_generation_prompt=True).to(device) set_seed(42) output = model.generate( **input_ids, max_new_tokens=8, ) prediction = tokenizer.decode(output[0, input_ids["input_ids"].shape[1]:], skip_special_tokens=True) print(prediction) ```