Create custom_st.py
Browse filesBased on the updated [demo](https://github.com/haon-chen/mmE5/blob/main/demo.py), I've created a custom `SentenceTransformer` model. However, I don't have the hardware to test it. I've created it based on [jasper implementation](https://huggingface.co/NovaSearch/jasper_en_vision_language_v1/blob/main/custom_st.py).
@tomaarsen
, could you review it as well, please?
- custom_st.py +105 -0
custom_st.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict, Optional, List
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from transformers import AutoProcessor, MllamaForConditionalGeneration
|
| 5 |
+
from sentence_transformers.models import Transformer as BaseTransformer
|
| 6 |
+
|
| 7 |
+
class MultiModalTransformer(BaseTransformer):
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
model_name_or_path: str,
|
| 11 |
+
cache_dir: Optional[str] = None,
|
| 12 |
+
tokenizer_args: Optional[Dict[str, Any]] = None,
|
| 13 |
+
**kwargs,
|
| 14 |
+
):
|
| 15 |
+
super().__init__(model_name_or_path, **kwargs)
|
| 16 |
+
if tokenizer_args is None:
|
| 17 |
+
tokenizer_args = {}
|
| 18 |
+
|
| 19 |
+
# Initialize processor and set padding side
|
| 20 |
+
self.processor = AutoProcessor.from_pretrained(
|
| 21 |
+
model_name_or_path, cache_dir=cache_dir, **tokenizer_args
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
# Configure model settings
|
| 25 |
+
config = self.auto_model.config
|
| 26 |
+
if hasattr(config, 'use_cache'):
|
| 27 |
+
config.use_cache = False
|
| 28 |
+
|
| 29 |
+
padding_side = "right"
|
| 30 |
+
self.processor.tokenizer.padding_side = padding_side
|
| 31 |
+
config.padding_side = padding_side
|
| 32 |
+
self.auto_model.padding_side = padding_side
|
| 33 |
+
|
| 34 |
+
def forward(
|
| 35 |
+
self, features: Dict[str, torch.Tensor], **kwargs
|
| 36 |
+
) -> Dict[str, torch.Tensor]:
|
| 37 |
+
# Process inputs through the model
|
| 38 |
+
outputs = self.auto_model(
|
| 39 |
+
**features,
|
| 40 |
+
return_dict=True,
|
| 41 |
+
output_hidden_states=True,
|
| 42 |
+
**kwargs
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
# Apply last pooling and normalization
|
| 46 |
+
last_hidden_state = outputs.hidden_states[-1]
|
| 47 |
+
attention_mask = features["attention_mask"]
|
| 48 |
+
sentence_embedding = self._last_pooling(last_hidden_state, attention_mask)
|
| 49 |
+
|
| 50 |
+
features.update({"sentence_embedding": sentence_embedding})
|
| 51 |
+
return features
|
| 52 |
+
|
| 53 |
+
def _last_pooling(self, last_hidden_state: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
|
| 54 |
+
"""Apply last token pooling and L2 normalization"""
|
| 55 |
+
sequence_lengths = attention_mask.sum(dim=1) - 1
|
| 56 |
+
batch_size = last_hidden_state.shape[0]
|
| 57 |
+
reps = last_hidden_state[torch.arange(batch_size, device=last_hidden_state.device), sequence_lengths]
|
| 58 |
+
return torch.nn.functional.normalize(reps, p=2, dim=-1)
|
| 59 |
+
|
| 60 |
+
def tokenize(self, texts: List[Dict] | List[str]) -> Dict[str, torch.Tensor]:
|
| 61 |
+
def process_text_item(item):
|
| 62 |
+
if isinstance(item, str):
|
| 63 |
+
return item, []
|
| 64 |
+
|
| 65 |
+
text, images = "", []
|
| 66 |
+
for sub_item in item:
|
| 67 |
+
if sub_item["type"] == "text":
|
| 68 |
+
text += sub_item["content"]
|
| 69 |
+
elif sub_item["type"] in ["image_bytes", "image_path"]:
|
| 70 |
+
text += "<|image|><|begin_of_text|> Represent the given image"
|
| 71 |
+
if sub_item["type"] == "image_bytes":
|
| 72 |
+
img = Image.open(BytesIO(sub_item["content"])).convert("RGB")
|
| 73 |
+
else:
|
| 74 |
+
img = Image.open(sub_item["content"]).convert("RGB")
|
| 75 |
+
images.append(img)
|
| 76 |
+
else:
|
| 77 |
+
raise ValueError(f"Unknown data type {sub_item['type']}")
|
| 78 |
+
return text, images
|
| 79 |
+
|
| 80 |
+
all_texts, all_images = [], []
|
| 81 |
+
for item in texts:
|
| 82 |
+
text, images = process_text_item(item)
|
| 83 |
+
all_texts.append(text)
|
| 84 |
+
all_images.extend(images)
|
| 85 |
+
|
| 86 |
+
# Process inputs through the processor
|
| 87 |
+
if all_images:
|
| 88 |
+
inputs = self.processor(
|
| 89 |
+
text=all_texts,
|
| 90 |
+
images=all_images,
|
| 91 |
+
padding="longest",
|
| 92 |
+
truncation=True,
|
| 93 |
+
max_length=self.max_seq_length,
|
| 94 |
+
return_tensors="pt"
|
| 95 |
+
)
|
| 96 |
+
else:
|
| 97 |
+
inputs = self.processor(
|
| 98 |
+
text=all_texts,
|
| 99 |
+
padding="longest",
|
| 100 |
+
truncation=True,
|
| 101 |
+
max_length=self.max_seq_length,
|
| 102 |
+
return_tensors="pt"
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
return inputs
|