update model card README.md
Browse files
README.md
CHANGED
@@ -14,8 +14,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
This model is a fine-tuned version of [facebook/wav2vec2-large-robust-ft-swbd-300h](https://huggingface.co/facebook/wav2vec2-large-robust-ft-swbd-300h) on an unknown dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
-
- Wer: 0.
|
19 |
|
20 |
## Model description
|
21 |
|
@@ -34,32 +34,40 @@ More information needed
|
|
34 |
### Training hyperparameters
|
35 |
|
36 |
The following hyperparameters were used during training:
|
37 |
-
- learning_rate: 0.
|
38 |
-
- train_batch_size:
|
39 |
-
- eval_batch_size:
|
40 |
- seed: 42
|
|
|
|
|
41 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
- lr_scheduler_type: linear
|
43 |
-
- lr_scheduler_warmup_steps:
|
44 |
-
- num_epochs:
|
45 |
- mixed_precision_training: Native AMP
|
46 |
|
47 |
### Training results
|
48 |
|
49 |
-
| Training Loss | Epoch | Step
|
50 |
-
|
51 |
-
|
|
52 |
-
|
|
53 |
-
|
|
54 |
-
|
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
|
60 |
### Framework versions
|
61 |
|
62 |
-
- Transformers 4.
|
63 |
- Pytorch 1.11.0+cu113
|
64 |
- Datasets 1.18.4
|
65 |
- Tokenizers 0.11.6
|
|
|
14 |
|
15 |
This model is a fine-tuned version of [facebook/wav2vec2-large-robust-ft-swbd-300h](https://huggingface.co/facebook/wav2vec2-large-robust-ft-swbd-300h) on an unknown dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.5214
|
18 |
+
- Wer: 0.7269
|
19 |
|
20 |
## Model description
|
21 |
|
|
|
34 |
### Training hyperparameters
|
35 |
|
36 |
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0004
|
38 |
+
- train_batch_size: 4
|
39 |
+
- eval_batch_size: 4
|
40 |
- seed: 42
|
41 |
+
- gradient_accumulation_steps: 20
|
42 |
+
- total_train_batch_size: 80
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 150
|
46 |
+
- num_epochs: 20
|
47 |
- mixed_precision_training: Native AMP
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
53 |
+
| 3.0565 | 0.09 | 250 | 3.0007 | 1.0 |
|
54 |
+
| 1.4935 | 0.18 | 500 | 1.0356 | 0.8593 |
|
55 |
+
| 1.1937 | 0.26 | 750 | 0.7995 | 0.5973 |
|
56 |
+
| 1.0645 | 0.35 | 1000 | 0.6634 | 0.7798 |
|
57 |
+
| 0.9923 | 0.44 | 1250 | 0.6355 | 0.7755 |
|
58 |
+
| 0.9494 | 0.53 | 1500 | 0.6208 | 0.7647 |
|
59 |
+
| 0.9503 | 0.61 | 1750 | 0.5996 | 0.5880 |
|
60 |
+
| 0.9111 | 0.7 | 2000 | 0.5775 | 0.5689 |
|
61 |
+
| 0.9027 | 0.79 | 2250 | 0.5761 | 0.6729 |
|
62 |
+
| 0.8943 | 0.88 | 2500 | 0.5407 | 0.6768 |
|
63 |
+
| 0.8671 | 0.96 | 2750 | 0.5257 | 0.6955 |
|
64 |
+
| 0.823 | 1.05 | 3000 | 0.5520 | 0.8153 |
|
65 |
+
| 0.8279 | 1.14 | 3250 | 0.5214 | 0.7269 |
|
66 |
|
67 |
|
68 |
### Framework versions
|
69 |
|
70 |
+
- Transformers 4.18.0
|
71 |
- Pytorch 1.11.0+cu113
|
72 |
- Datasets 1.18.4
|
73 |
- Tokenizers 0.11.6
|