itaihay commited on
Commit
706d1b7
·
1 Parent(s): fb7efa9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -17
README.md CHANGED
@@ -14,8 +14,8 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  This model is a fine-tuned version of [facebook/wav2vec2-large-robust-ft-swbd-300h](https://huggingface.co/facebook/wav2vec2-large-robust-ft-swbd-300h) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 0.5060
18
- - Wer: 0.3620
19
 
20
  ## Model description
21
 
@@ -34,32 +34,40 @@ More information needed
34
  ### Training hyperparameters
35
 
36
  The following hyperparameters were used during training:
37
- - learning_rate: 0.0001
38
- - train_batch_size: 7
39
- - eval_batch_size: 8
40
  - seed: 42
 
 
41
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
  - lr_scheduler_type: linear
43
- - lr_scheduler_warmup_steps: 1000
44
- - num_epochs: 3
45
  - mixed_precision_training: Native AMP
46
 
47
  ### Training results
48
 
49
- | Training Loss | Epoch | Step | Validation Loss | Wer |
50
- |:-------------:|:-----:|:-----:|:---------------:|:------:|
51
- | 0.8809 | 0.44 | 10000 | 0.6088 | 0.4008 |
52
- | 0.8435 | 0.77 | 20000 | 0.6319 | 0.3914 |
53
- | 0.7454 | 1.15 | 30000 | 0.6126 | 0.3809 |
54
- | 0.6806 | 1.53 | 40000 | 0.5307 | 0.3792 |
55
- | 0.6589 | 1.91 | 50000 | 0.5430 | 0.3710 |
56
- | 0.603 | 2.3 | 60000 | 0.5298 | 0.3646 |
57
- | 0.5886 | 2.68 | 70000 | 0.5060 | 0.3620 |
 
 
 
 
 
 
58
 
59
 
60
  ### Framework versions
61
 
62
- - Transformers 4.17.0
63
  - Pytorch 1.11.0+cu113
64
  - Datasets 1.18.4
65
  - Tokenizers 0.11.6
 
14
 
15
  This model is a fine-tuned version of [facebook/wav2vec2-large-robust-ft-swbd-300h](https://huggingface.co/facebook/wav2vec2-large-robust-ft-swbd-300h) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 0.5214
18
+ - Wer: 0.7269
19
 
20
  ## Model description
21
 
 
34
  ### Training hyperparameters
35
 
36
  The following hyperparameters were used during training:
37
+ - learning_rate: 0.0004
38
+ - train_batch_size: 4
39
+ - eval_batch_size: 4
40
  - seed: 42
41
+ - gradient_accumulation_steps: 20
42
+ - total_train_batch_size: 80
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 150
46
+ - num_epochs: 20
47
  - mixed_precision_training: Native AMP
48
 
49
  ### Training results
50
 
51
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
52
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
53
+ | 3.0565 | 0.09 | 250 | 3.0007 | 1.0 |
54
+ | 1.4935 | 0.18 | 500 | 1.0356 | 0.8593 |
55
+ | 1.1937 | 0.26 | 750 | 0.7995 | 0.5973 |
56
+ | 1.0645 | 0.35 | 1000 | 0.6634 | 0.7798 |
57
+ | 0.9923 | 0.44 | 1250 | 0.6355 | 0.7755 |
58
+ | 0.9494 | 0.53 | 1500 | 0.6208 | 0.7647 |
59
+ | 0.9503 | 0.61 | 1750 | 0.5996 | 0.5880 |
60
+ | 0.9111 | 0.7 | 2000 | 0.5775 | 0.5689 |
61
+ | 0.9027 | 0.79 | 2250 | 0.5761 | 0.6729 |
62
+ | 0.8943 | 0.88 | 2500 | 0.5407 | 0.6768 |
63
+ | 0.8671 | 0.96 | 2750 | 0.5257 | 0.6955 |
64
+ | 0.823 | 1.05 | 3000 | 0.5520 | 0.8153 |
65
+ | 0.8279 | 1.14 | 3250 | 0.5214 | 0.7269 |
66
 
67
 
68
  ### Framework versions
69
 
70
+ - Transformers 4.18.0
71
  - Pytorch 1.11.0+cu113
72
  - Datasets 1.18.4
73
  - Tokenizers 0.11.6