Update README.md
Browse files
README.md
CHANGED
|
@@ -72,21 +72,24 @@ iterate_model = AutoModelForCausalLM.from_pretrained(
|
|
| 72 |
)
|
| 73 |
#Note: You can quantize the model using bnb confi parameter to load the model in T4 GPU
|
| 74 |
```
|
|
|
|
| 75 |
### Load tokenizer to save it
|
| 76 |
tokenizer = AutoTokenizer.from_pretrained(model_repo_id, trust_remote_code=True)
|
| 77 |
tokenizer.pad_token = tokenizer.eos_token
|
| 78 |
tokenizer.padding_side = "right"
|
|
|
|
| 79 |
|
|
|
|
| 80 |
### Inferencing
|
| 81 |
|
| 82 |
logging.set_verbosity(logging.CRITICAL)
|
| 83 |
-
|
| 84 |
prompt = "Can you provide a python script that uses the YOLOv8 model from the Ultralytics library to detect people in an image, draw green bounding boxes around them, and then save the image?"
|
| 85 |
|
| 86 |
pipe = pipeline(task="text-generation", model=iterate_model, tokenizer=tokenizer, max_length=1024)
|
| 87 |
result = pipe(f"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response:",temperature=0.1,do_sample=True)
|
| 88 |
print(result[0]['generated_text'])
|
| 89 |
-
|
| 90 |
## Sample demo notebook
|
| 91 |
[https://colab.research.google.com/drive/1USuNLFxLex-C5tLHYET_nQfpM4ALCbc5?usp=sharing#scrollTo=lNCZTBj1nBsJ]
|
| 92 |
|
|
|
|
| 72 |
)
|
| 73 |
#Note: You can quantize the model using bnb confi parameter to load the model in T4 GPU
|
| 74 |
```
|
| 75 |
+
```
|
| 76 |
### Load tokenizer to save it
|
| 77 |
tokenizer = AutoTokenizer.from_pretrained(model_repo_id, trust_remote_code=True)
|
| 78 |
tokenizer.pad_token = tokenizer.eos_token
|
| 79 |
tokenizer.padding_side = "right"
|
| 80 |
+
```
|
| 81 |
|
| 82 |
+
```
|
| 83 |
### Inferencing
|
| 84 |
|
| 85 |
logging.set_verbosity(logging.CRITICAL)
|
| 86 |
+
#Sample prompt
|
| 87 |
prompt = "Can you provide a python script that uses the YOLOv8 model from the Ultralytics library to detect people in an image, draw green bounding boxes around them, and then save the image?"
|
| 88 |
|
| 89 |
pipe = pipeline(task="text-generation", model=iterate_model, tokenizer=tokenizer, max_length=1024)
|
| 90 |
result = pipe(f"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response:",temperature=0.1,do_sample=True)
|
| 91 |
print(result[0]['generated_text'])
|
| 92 |
+
```
|
| 93 |
## Sample demo notebook
|
| 94 |
[https://colab.research.google.com/drive/1USuNLFxLex-C5tLHYET_nQfpM4ALCbc5?usp=sharing#scrollTo=lNCZTBj1nBsJ]
|
| 95 |
|