Update README.md
Browse files
README.md
CHANGED
|
@@ -2,3 +2,50 @@
|
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
| 4 |
This is a simple AI image detection model utilizing visual transformers trained on the CIFake dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
| 4 |
This is a simple AI image detection model utilizing visual transformers trained on the CIFake dataset.
|
| 5 |
+
|
| 6 |
+
Example usage:
|
| 7 |
+
```
|
| 8 |
+
import torch
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from torchvision import transforms
|
| 11 |
+
from transformers import ViTForImageClassification, ViTImageProcessor
|
| 12 |
+
|
| 13 |
+
# Load the trained model
|
| 14 |
+
model_path = 'trained_modelBEST.pth'
|
| 15 |
+
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')
|
| 16 |
+
model.classifier = torch.nn.Linear(model.classifier.in_features, 2)
|
| 17 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
| 18 |
+
model.eval()
|
| 19 |
+
|
| 20 |
+
# Define the image preprocessing pipeline
|
| 21 |
+
preprocess = transforms.Compose([
|
| 22 |
+
transforms.Resize((224, 224)),
|
| 23 |
+
transforms.ToTensor(),
|
| 24 |
+
])
|
| 25 |
+
|
| 26 |
+
def predict(image_path, model, preprocess):
|
| 27 |
+
# Load and preprocess the image
|
| 28 |
+
image = Image.open(image_path).convert('RGB')
|
| 29 |
+
inputs = preprocess(image).unsqueeze(0)
|
| 30 |
+
|
| 31 |
+
# Perform inference
|
| 32 |
+
with torch.no_grad():
|
| 33 |
+
outputs = model(inputs).logits
|
| 34 |
+
predicted_label = torch.argmax(outputs).item()
|
| 35 |
+
|
| 36 |
+
# Map the predicted label to the corresponding class
|
| 37 |
+
label_map = {0: 'FAKE', 1: 'REAL'}
|
| 38 |
+
predicted_class = label_map[predicted_label]
|
| 39 |
+
return predicted_class
|
| 40 |
+
|
| 41 |
+
# Example usage
|
| 42 |
+
image_paths = [
|
| 43 |
+
'path/to/real/image.jpg',
|
| 44 |
+
'path/to/fake/image.jpg',
|
| 45 |
+
'path/to/reddit/image.jpg'
|
| 46 |
+
]
|
| 47 |
+
|
| 48 |
+
for image_path in image_paths:
|
| 49 |
+
predicted_class = predict(image_path, model, preprocess)
|
| 50 |
+
print(f'Predicted class: {predicted_class}', image_path)
|
| 51 |
+
```
|