update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- marker-associations-binary-base
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: marker-associations-binary-base
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Text Classification
|
17 |
+
type: text-classification
|
18 |
+
dataset:
|
19 |
+
name: marker-associations-binary-base
|
20 |
+
type: marker-associations-binary-base
|
21 |
+
metrics:
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.7981651376146789
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.9560439560439561
|
28 |
+
- name: F1
|
29 |
+
type: f1
|
30 |
+
value: 0.87
|
31 |
+
- name: Accuracy
|
32 |
+
type: accuracy
|
33 |
+
value: 0.8884120171673819
|
34 |
+
---
|
35 |
+
|
36 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
37 |
+
should probably proofread and complete it, then remove this comment. -->
|
38 |
+
|
39 |
+
# marker-associations-binary-base
|
40 |
+
|
41 |
+
This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the marker-associations-binary-base dataset.
|
42 |
+
It achieves the following results on the evaluation set:
|
43 |
+
- Loss: 0.4243
|
44 |
+
- Precision: 0.7982
|
45 |
+
- Recall: 0.9560
|
46 |
+
- F1: 0.87
|
47 |
+
- Accuracy: 0.8884
|
48 |
+
- Auc: 0.9516
|
49 |
+
|
50 |
+
## Model description
|
51 |
+
|
52 |
+
More information needed
|
53 |
+
|
54 |
+
## Intended uses & limitations
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Training and evaluation data
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training procedure
|
63 |
+
|
64 |
+
### Training hyperparameters
|
65 |
+
|
66 |
+
The following hyperparameters were used during training:
|
67 |
+
- learning_rate: 5e-05
|
68 |
+
- train_batch_size: 16
|
69 |
+
- eval_batch_size: 16
|
70 |
+
- seed: 1
|
71 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
72 |
+
- lr_scheduler_type: linear
|
73 |
+
- num_epochs: 15
|
74 |
+
|
75 |
+
### Training results
|
76 |
+
|
77 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Auc |
|
78 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:------:|
|
79 |
+
| No log | 1.0 | 88 | 0.3266 | 0.8191 | 0.8462 | 0.8324 | 0.8670 | 0.9313 |
|
80 |
+
| No log | 2.0 | 176 | 0.3335 | 0.7870 | 0.9341 | 0.8543 | 0.8755 | 0.9465 |
|
81 |
+
| No log | 3.0 | 264 | 0.4243 | 0.7982 | 0.9560 | 0.87 | 0.8884 | 0.9516 |
|
82 |
+
| No log | 4.0 | 352 | 0.5388 | 0.825 | 0.7253 | 0.7719 | 0.8326 | 0.9384 |
|
83 |
+
| No log | 5.0 | 440 | 0.7101 | 0.8537 | 0.7692 | 0.8092 | 0.8584 | 0.9416 |
|
84 |
+
| 0.1824 | 6.0 | 528 | 0.6175 | 0.8242 | 0.8242 | 0.8242 | 0.8627 | 0.9478 |
|
85 |
+
|
86 |
+
|
87 |
+
### Framework versions
|
88 |
+
|
89 |
+
- Transformers 4.11.3
|
90 |
+
- Pytorch 1.9.0+cu111
|
91 |
+
- Tokenizers 0.10.3
|