File size: 2,861 Bytes
a74b1a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#!/usr/bin/env python
# coding: utf-8

# In[2]:


# import pytorch and machine learning stuff
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader

# import other stuff
import numpy as np


# In[3]:


# import resnet from torch
import torch.library
from torchvision.models import squeezenet1_1
from torchvision.models import resnet50
from torchvision.models import resnet18
from torchvision.models import mobilenet_v2
from torchvision import transforms
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader


# In[4]:


class_num = 5
classes = ['Ak', 'Ala_Idris', 'Buzgulu', 'Dimnit', 'Nazli']


# In[5]:


model = mobilenet_v2(pretrained=True)


# In[9]:


print(model)


# In[7]:


transform = transforms.Compose([
  transforms.RandomResizedCrop(224),
  transforms.RandomHorizontalFlip(),
  transforms.ToTensor(),
  transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
])


# In[8]:


training_set = ImageFolder('../data/train', transform=transform)
test_set = ImageFolder('../data/test', transform=transform)
val_set = ImageFolder('../data/val', transform=transform)


# In[47]:


batch_size = 8
epochs = 5
lr = 1e-5
loss_fn = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=lr)


# In[48]:


train_loader = DataLoader(training_set, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_set, batch_size=batch_size)
val_loader = DataLoader(val_set, batch_size=batch_size)


# In[49]:


model.classifier[1] = nn.Linear(in_features=1280, out_features=class_num)


# In[52]:


epochs = 1


# In[55]:


# train the model
for epoch in range(epochs):
  model.train()
  for batch_idx, (data, target) in enumerate(train_loader):
    optimizer.zero_grad()
    output = model(data)
    print("Out: ", [a.argmax().item() for a in output])
    print("Target: ", target)
    loss = loss_fn(output, target)
    loss.backward()
    optimizer.step()
    if batch_idx % 10 == 0:
      print('Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
        epoch, batch_idx * len(data), len(train_loader.dataset),
        100. * batch_idx / len(train_loader), loss.item()
      ))

  # test the model
  model.eval()
  test_loss = 0
  correct = 0
  with torch.no_grad():
    for data, target in test_loader:
      output = model(data)
      test_loss += loss_fn(output, target).item()
      pred = output.argmax(dim=1, keepdim=True)
      correct += pred.eq(target.view_as(pred)).sum().item()

  test_loss /= len(test_loader.dataset)
  print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
    test_loss, correct, len(test_loader.dataset),
    100. * correct / len(test_loader.dataset)
  ))


# In[51]:


model_scripted = torch.jit.script(model)
model_scripted.save('../models/mobilenet.pt')


# In[ ]: