File size: 86,410 Bytes
7c564b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 |
# coding=utf-8
# Copyright 2025 The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import math
import os
import types
from collections.abc import Iterator
from copy import deepcopy
from dataclasses import dataclass
from threading import Thread
from typing import List
from typing import Literal
from typing import Optional
from typing import Tuple
from typing import Union
import numpy as np
import soundfile as sf
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils.parametrize as P
from huggingface_hub import hf_hub_download
from PIL import Image
from torch.nn.utils.parametrizations import weight_norm
from tqdm import tqdm
from transformers import AutoProcessor
from transformers import BertTokenizerFast
from transformers import LlamaConfig
from transformers import LlamaModel
# from transformers import LogitsWarper
from transformers import LogitsProcessor
from transformers import PreTrainedModel
from transformers import Qwen2ForCausalLM
from transformers import Qwen2PreTrainedModel
from transformers import TextIteratorStreamer
from transformers import TopKLogitsWarper
from transformers import TopPLogitsWarper
from transformers.cache_utils import Cache
from transformers.cache_utils import DynamicCache
from transformers.cache_utils import EncoderDecoderCache
from transformers.cache_utils import StaticCache
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.modeling_outputs import ModelOutput
from transformers.models.whisper.modeling_whisper import ACT2FN
from transformers.models.whisper.modeling_whisper import WHISPER_ATTENTION_CLASSES
from transformers.models.whisper.modeling_whisper import WhisperConfig
from transformers.models.whisper.modeling_whisper import WhisperEncoder
try:
from vector_quantize_pytorch import GroupedResidualFSQ
from vocos import Vocos
from vocos.pretrained import instantiate_class
_tts_deps = True
except:
_tts_deps = False
from .configuration_minicpm import ConditionalChatTTSConfig
from .configuration_minicpm import MiniCPMOConfig
from .modeling_navit_siglip import SiglipVisionTransformer
from .image_processing_minicpmv import MiniCPMOBatchFeature
from .resampler import Resampler
from .utils import NumberToTextConverter
from .utils import sentence_end
from .utils import VoiceChecker
logger = logging.getLogger(__name__)
@dataclass
class OmniOutput(ModelOutput):
text: Optional[Union[str, List[str], Iterator]] = None
spk_embeds: Optional[torch.FloatTensor] = None
audio_wav: Optional[np.ndarray] = None
sampling_rate: Optional[int] = None
class MiniCPMOPreTrainedModel(Qwen2PreTrainedModel):
config_class = MiniCPMOConfig
class MiniCPMO(MiniCPMOPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.llm = Qwen2ForCausalLM(config)
self.llm.prepare_inputs_for_generation = types.MethodType(prepare_inputs_for_generation, self.llm) # patch llm
self.embed_dim = self.llm.config.hidden_size
# init vision module
if self.config.init_vision:
self.vpm = self.init_vision_module()
self.vision_dim = self.vpm.embed_dim
self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)
# init audio module
if self.config.init_audio:
self.apm = self.init_audio_module()
audio_output_dim = int(self.apm.config.encoder_ffn_dim // 4)
self.audio_avg_pooler = nn.AvgPool1d(self.config.audio_pool_step, stride=self.config.audio_pool_step)
self.audio_projection_layer = MultiModalProjector(in_dim=audio_output_dim, out_dim=self.embed_dim)
self.audio_encoder_layer = -1
# init tts module
# if self.config.init_tts:
# assert _tts_deps, "please make sure vector_quantize_pytorch and vocos are installed."
# self.tts = self.init_tts_module()
self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
self.terminators = ["<|im_end|>", "<|endoftext|>"]
self.default_tts_chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n<|spk_bos|><|spk|><|spk_eos|><|tts_bos|>' }}{% endif %}"
self.force_no_stop = False
# for stream api
self.reset_session()
def reset_session(self):
self.session_id = None
self.new_user_msg = True
self.llm_generated = False
self.llm_generate_completed = False
self.llm_past_key_values = None
self.audio_past_key_values = None # apm kv cache
def init_tts(
self,
tts_text_tokenizer_path=None,
vocos_ckpt_path=None,
):
"""
load tts tokenizer and vocos
1. try load form local 2. try load from huggingface
"""
from .processing_minicpmo import ChatTTSProcessor
if tts_text_tokenizer_path is None:
tts_text_tokenizer_path = os.path.join(self.config._name_or_path, "assets/chattts_tokenizer")
if not os.path.exists(tts_text_tokenizer_path):
# try from hf model_id
tts_text_tokenizer_path = "openbmb/chattts_tokenizer"
tts_text_tokenizer = BertTokenizerFast.from_pretrained(tts_text_tokenizer_path)
self.tts_processor = ChatTTSProcessor(text_tokenizer=tts_text_tokenizer)
if vocos_ckpt_path is None:
vocos_ckpt_path = os.path.join(self.config._name_or_path, "assets/Vocos.pt")
if not os.path.exists(vocos_ckpt_path):
vocos_ckpt_path = hf_hub_download(repo_id="openbmb/MiniCPM-o-2_6", subfolder="assets", filename="Vocos.pt")
assert os.path.exists(vocos_ckpt_path)
self.vocos = self.initialize_vocos(vocos_ckpt_path)
def initialize_vocos(self, ckpt_path):
feature_extractor = instantiate_class(
args=(),
init={
"class_path": "vocos.feature_extractors.MelSpectrogramFeatures",
"init_args": {"sample_rate": 24000, "n_fft": 1024, "hop_length": 256, "n_mels": 100},
},
)
backbone = instantiate_class(
args=(),
init={
"class_path": "vocos.models.VocosBackbone",
"init_args": {"input_channels": 100, "dim": 512, "intermediate_dim": 1536, "num_layers": 8},
},
)
head = instantiate_class(
args=(),
init={"class_path": "vocos.heads.ISTFTHead", "init_args": {"dim": 512, "n_fft": 1024, "hop_length": 256}},
)
vocos = Vocos(feature_extractor, backbone, head).to("cuda").eval().to(torch.float32)
vocos.load_state_dict(torch.load(ckpt_path, weights_only=True, mmap=True))
return vocos
def init_vision_module(self):
if self.config._attn_implementation == "flash_attention_2":
self.config.vision_config._attn_implementation = "flash_attention_2"
else:
self.config.vision_config._attn_implementation = "eager"
model = SiglipVisionTransformer(self.config.vision_config)
if self.config.drop_vision_last_layer:
model.encoder.layers = model.encoder.layers[:-1]
setattr(model, "embed_dim", model.embeddings.embed_dim)
setattr(model, "patch_size", model.embeddings.patch_size)
return model
def init_resampler(self, embed_dim, vision_dim):
return Resampler(
num_queries=self.config.query_num,
embed_dim=embed_dim,
num_heads=embed_dim // 128,
kv_dim=vision_dim,
adaptive=True,
)
def init_audio_module(self):
model = MiniCPMWhisperEncoder(self.config.audio_config)
return model
def init_tts_module(self):
model = ConditionalChatTTS(self.config.tts_config)
return model
def get_input_embeddings(self):
return self.llm.get_input_embeddings()
def set_input_embeddings(self, value):
self.llm.embed_tokens = value
def get_output_embeddings(self):
return self.llm.lm_head
def set_output_embeddings(self, new_embeddings):
self.llm.lm_head = new_embeddings
def set_decoder(self, decoder):
self.llm = decoder
def get_decoder(self):
return self.llm
def subsequent_chunk_mask(
self,
size: int,
chunk_size: int,
num_left_chunks: int = -1,
device: torch.device = torch.device("cpu"),
num_lookhead: int = 0,
) -> torch.Tensor:
"""Create mask for subsequent steps (size, size) with chunk size,
this is for streaming encoder
Args:
size (int): size of mask
chunk_size (int): size of chunk
num_left_chunks (int): number of left chunks
<0: use full chunk
>=0: use num_left_chunks
device (torch.device): "cpu" or "cuda" or torch.Tensor.device
Returns:
torch.Tensor: mask
Examples:
>>> subsequent_chunk_mask(4, 2)
[[1, 1, 0, 0],
[1, 1, 0, 0],
[1, 1, 1, 1],
[1, 1, 1, 1]]
"""
ret = torch.zeros(size, size, device=device, dtype=torch.bool)
for i in range(size):
if num_left_chunks < 0:
start = 0
else:
start = max((i // chunk_size - num_left_chunks) * chunk_size, 0)
ending = min((i // chunk_size + 1) * chunk_size + num_lookhead, size)
ret[i, start:ending] = True
return ret
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
"""
Computes the output length of the convolutional layers and the output length of the audio encoder
"""
input_lengths_after_cnn = (input_lengths - 1) // 2 + 1
input_lengths_after_pooling = (
input_lengths_after_cnn - self.config.audio_pool_step
) // self.config.audio_pool_step + 1
input_lengths_after_pooling = input_lengths_after_pooling.to(dtype=torch.int32)
return input_lengths_after_cnn, input_lengths_after_pooling
def get_vllm_embedding(self, data):
"""
Compute all visual embeddings, and set into llm embeddings.
Args:
data: Dict
tgt_sizes: image size after patch embedding
pixel_values: image features
image_bound: position of each picture corresponding to input_ids
input_ids: full input_ids, include placeholder
Returns:
embedding with vision, vision_hidden_states
"""
if "vision_hidden_states" not in data:
dtype = self.llm.model.embed_tokens.weight.dtype
device = self.llm.model.embed_tokens.weight.device
tgt_sizes = data["tgt_sizes"]
pixel_values_list = data["pixel_values"]
vision_hidden_states = []
all_pixel_values = []
img_cnt = []
for pixel_values in pixel_values_list:
img_cnt.append(len(pixel_values))
all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values])
# exist image
if all_pixel_values:
tgt_sizes = [tgt_size for tgt_size in tgt_sizes if isinstance(tgt_size, torch.Tensor)]
tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)
max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1])
all_pixel_values = torch.nn.utils.rnn.pad_sequence(
all_pixel_values, batch_first=True, padding_value=0.0
)
B, L, _ = all_pixel_values.shape
all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device)
for i in range(B):
patch_attn_mask[i, 0, : tgt_sizes[i][0] * tgt_sizes[i][1]] = True
vision_batch_size = self.config.vision_batch_size
all_pixel_values = all_pixel_values.type(dtype)
if B > vision_batch_size:
hs = []
for i in range(0, B, vision_batch_size):
start_idx = i
end_idx = i + vision_batch_size
tmp_hs = self.vpm(
all_pixel_values[start_idx:end_idx],
patch_attention_mask=patch_attn_mask[start_idx:end_idx],
tgt_sizes=tgt_sizes[start_idx:end_idx],
).last_hidden_state
hs.append(tmp_hs)
vision_embedding = torch.cat(hs, dim=0)
else:
vision_embedding = self.vpm(
all_pixel_values, patch_attention_mask=patch_attn_mask, tgt_sizes=tgt_sizes
).last_hidden_state
vision_embedding = self.resampler(vision_embedding, tgt_sizes)
start = 0
for pixel_values in pixel_values_list:
img_cnt = len(pixel_values)
if img_cnt > 0:
vision_hidden_states.append(vision_embedding[start : start + img_cnt])
start += img_cnt
else:
vision_hidden_states.append([])
else: # no image
if self.training:
dummy_image = torch.zeros((1, 3, 224, 224), device=device, dtype=dtype)
tgt_sizes = torch.Tensor(
[[(224 // self.config.patch_size), math.ceil(224 / self.config.patch_size)]]
).type(torch.int32)
dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes)
else:
dummy_feature = []
for _ in range(len(pixel_values_list)):
vision_hidden_states.append(dummy_feature)
else:
vision_hidden_states = data["vision_hidden_states"]
if hasattr(self.llm.config, "scale_emb"):
vllm_embedding = self.llm.model.embed_tokens(data["input_ids"]) * self.llm.config.scale_emb
else:
vllm_embedding = self.llm.model.embed_tokens(data["input_ids"])
new_vllm_embedding = vllm_embedding.clone()
vision_hidden_states = [
i.type(vllm_embedding.dtype) if isinstance(i, torch.Tensor) else i for i in vision_hidden_states
]
bs = len(data["input_ids"])
for i in range(bs):
cur_vs_hs = vision_hidden_states[i]
if len(cur_vs_hs) > 0:
cur_vllm_emb = vllm_embedding[i]
cur_image_bound = data["image_bound"][i]
if len(cur_image_bound) > 0:
image_indices = torch.stack(
[torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
).to(vllm_embedding.device)
new_vllm_embedding[i] = cur_vllm_emb.scatter(
0,
image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
cur_vs_hs.view(-1, cur_vs_hs.shape[-1]),
)
elif self.training:
new_vllm_embedding[i] += cur_vs_hs[0].mean() * 0
return new_vllm_embedding, vision_hidden_states
def get_audio_embedding_streaming(self, data):
r"""
Extract audio embeddings in a streaming manner using cached key-value pairs.
This method processes incoming audio features incrementally and stores/updates `past_key_values`
for faster inference on subsequent audio frames. It only supports batch_size=1 and is intended
for streaming scenarios.
Args:
data (dict):
- **"audio_features"** (`torch.FloatTensor`): Input mel-spectrograms of shape `(batch_size, 80, frames)`.
- **"audio_feature_lens"** (List[List[int]]): Lengths of each audio segment for each item in the batch.
Returns:
List[List[torch.Tensor]]: audio embeddings
"""
wavforms = data.get("audio_features", []) # (bs, 80, frames) or [], multi audios need filled in advance
audio_feature_lens_raw = data.get("audio_feature_lens", []) # list, [[x1, x2], [y1], [z1]]
# exist audio
if len(wavforms) > 0:
audio_feature_lens = torch.hstack(audio_feature_lens_raw)
batch_size, _, max_mel_seq_len = wavforms.shape
assert batch_size == 1
max_seq_len = (max_mel_seq_len - 1) // 2 + 1
if self.audio_past_key_values is not None:
cache_length = self.audio_past_key_values[0][0].shape[2]
apm_max_len = self.apm.embed_positions.weight.shape[0]
if cache_length + max_seq_len >= apm_max_len:
logger.warning(
f"audio_past_key_values length {cache_length + max_seq_len} exceed {apm_max_len}, reset."
)
self.audio_past_key_values = None
audio_outputs = self.apm(wavforms, past_key_values=self.audio_past_key_values, use_cache=True)
audio_states = audio_outputs.last_hidden_state # [:, :audio_feat_lengths, :]
self.audio_past_key_values = audio_outputs.past_key_values
audio_embeds = self.audio_projection_layer(audio_states)
audio_embeds = audio_embeds.transpose(1, 2)
audio_embeds = self.audio_avg_pooler(audio_embeds)
audio_embeds = audio_embeds.transpose(1, 2)
_, feature_lens_after_pooling = self._get_feat_extract_output_lengths(audio_feature_lens)
num_audio_tokens = feature_lens_after_pooling
final_audio_embeds = []
idx = 0
for i in range(len(audio_feature_lens_raw)):
target_audio_embeds = []
for _ in range(len(audio_feature_lens_raw[i])):
target_audio_embeds.append(audio_embeds[idx, : num_audio_tokens[idx], :])
idx += 1
final_audio_embeds.append(target_audio_embeds)
return final_audio_embeds
else:
return []
def get_audio_embedding(self, data, chunk_length=-1, dummy=True):
r"""
Extract full audio embeddings with optional chunk-based attention.
This method computes embeddings for all audio frames at once, either using full attention (when
`chunk_length` is -1) or chunk-based attention (when `chunk_length` is a positive number). It does
not use key-value caching and is suitable for non-streaming inference.
Args:
data (dict):
- **"audio_features"** (`torch.FloatTensor`): Input mel-spectrograms of shape `(batch_size, 80, frames)`.
- **"audio_feature_lens"** (List[List[int]]): Lengths of each audio segment for each item in the batch.
chunk_length (int, optional): Determines whether to use full attention (-1) or chunk-based
attention (>0) during embedding computation.
Returns:
List[List[torch.Tensor]]: audio embeddings
"""
wavforms = data.get("audio_features", []) # (bs, 80, frames) or [], multi audios need filled in advance
audio_feature_lens_raw = data.get("audio_feature_lens", []) # list, [[x1, x2], [y1], [z1]]
# exist audio
if len(wavforms) > 0:
audio_feature_lens = torch.hstack(audio_feature_lens_raw)
batch_size, _, max_mel_seq_len = wavforms.shape
max_seq_len = (max_mel_seq_len - 1) // 2 + 1
# Create a sequence tensor of shape (batch_size, max_seq_len)
seq_range = (
torch.arange(0, max_seq_len, dtype=audio_feature_lens.dtype, device=audio_feature_lens.device)
.unsqueeze(0)
.expand(batch_size, max_seq_len)
)
lengths_expand = audio_feature_lens.unsqueeze(1).expand(batch_size, max_seq_len)
# Create mask
padding_mask = seq_range >= lengths_expand # 1 for padded values
audio_attention_mask_ = padding_mask.view(batch_size, 1, 1, max_seq_len).expand(
batch_size, 1, max_seq_len, max_seq_len
)
audio_attention_mask = audio_attention_mask_.to(
dtype=self.apm.conv1.weight.dtype, device=self.apm.conv1.weight.device
)
if chunk_length > 0:
chunk_num_frame = int(chunk_length * 50)
chunk_mask = self.subsequent_chunk_mask(
size=max_seq_len,
chunk_size=chunk_num_frame,
num_left_chunks=-1,
device=audio_attention_mask_.device,
)
audio_attention_mask_ = torch.logical_or(audio_attention_mask_, torch.logical_not(chunk_mask))
audio_attention_mask[audio_attention_mask_] = float("-inf")
audio_states = self.apm(
wavforms, output_hidden_states=True, attention_mask=audio_attention_mask
).hidden_states[self.audio_encoder_layer]
audio_embeds = self.audio_projection_layer(audio_states)
audio_embeds = audio_embeds.transpose(1, 2)
audio_embeds = self.audio_avg_pooler(audio_embeds)
audio_embeds = audio_embeds.transpose(1, 2)
_, feature_lens_after_pooling = self._get_feat_extract_output_lengths(audio_feature_lens)
num_audio_tokens = feature_lens_after_pooling
final_audio_embeds = []
idx = 0
for i in range(len(audio_feature_lens_raw)):
target_audio_embeds = []
for _ in range(len(audio_feature_lens_raw[i])):
target_audio_embeds.append(audio_embeds[idx, : num_audio_tokens[idx], :])
idx += 1
final_audio_embeds.append(target_audio_embeds)
return final_audio_embeds
elif self.training and dummy:
dtype = self.apm.embed_positions.weight.dtype
device = self.apm.embed_positions.weight.device
dummy_wavs = torch.zeros((1, 80, 100), device=device, dtype=dtype)
audio_states = self.apm(dummy_wavs, output_hidden_states=True).hidden_states[self.audio_encoder_layer]
audio_embeds = self.audio_projection_layer(audio_states)
audio_embeds = audio_embeds.transpose(1, 2)
audio_embeds = self.audio_avg_pooler(audio_embeds)
audio_embeds = audio_embeds.transpose(1, 2)
return [audio_embeds]
else:
return []
def get_omni_embedding(self, data, input_embeddings, chunk_length=-1, stream_input=False):
"""
Args:
data:
input_embeddings:
chunk_length: whisper use full attention or chunk attention
stream_input: use streaming audio embedding
Returns:
final embeddings with audio feature
"""
if stream_input:
audio_embeddings = self.get_audio_embedding_streaming(data)
else:
audio_embeddings = self.get_audio_embedding(data, chunk_length)
bs = len(input_embeddings)
if len(data.get("audio_features", [])) > 0:
assert len(audio_embeddings) == len(input_embeddings)
if len(audio_embeddings) > 0:
audio_bounds = data["audio_bounds"]
if self.config.chunk_input:
for i in range(bs):
if not audio_embeddings[i]:
continue
audio_embs = torch.cat(audio_embeddings[i], dim=0).to(
device=input_embeddings.device, dtype=input_embeddings.dtype
)
audio_start_pos = 0
for bound in audio_bounds[i]:
audio_len = bound[1] - bound[0]
input_embeddings[i, bound[0] : bound[1]] = audio_embs[
audio_start_pos : audio_start_pos + audio_len, :
]
audio_start_pos += audio_len
else:
for i in range(bs):
audio_embs = audio_embeddings[i]
bounds = audio_bounds[i]
for embs, bound in zip(audio_embs, bounds):
audio_indices = torch.arange(bound[0], bound[1], dtype=torch.long).to(
input_embeddings.device
)
if embs.shape[0] != len(audio_indices):
raise ValueError(
f"Shape mismatch: Trying to assign embeddings of shape {embs.shape} "
f"to input indices of length {len(audio_indices)}"
)
input_embeddings[i, audio_indices] = embs.to(input_embeddings.dtype)
elif self.training:
for i in range(bs):
# dummy audio_embeddings
input_embeddings = input_embeddings + audio_embeddings[0].mean() * 0
return input_embeddings
def forward(self, data, **kwargs):
vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
if self.config.init_audio:
vllm_embedding = self.get_omni_embedding(
data, input_embeddings=vllm_embedding, chunk_length=self.config.audio_chunk_length
)
position_ids = data["position_ids"]
if position_ids.dtype != torch.int64:
position_ids = position_ids.long()
# compatible with llama factory
for key in ["input_ids", "inputs_embeds", "position_ids"]:
if key in kwargs:
del kwargs[key]
return self.llm(input_ids=None, position_ids=position_ids, inputs_embeds=vllm_embedding, **kwargs)
def _decode(self, inputs_embeds, tokenizer, attention_mask, **kwargs):
kwargs.pop("output_hidden_states", None)
kwargs.pop("return_dict_in_generate", None)
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
outputs = self.llm.generate(
inputs_embeds=inputs_embeds,
pad_token_id=0,
eos_token_id=terminators,
attention_mask=attention_mask,
output_hidden_states=True,
return_dict_in_generate=True,
**kwargs,
)
return outputs
def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
streamer = TextIteratorStreamer(tokenizer=tokenizer)
generation_kwargs = {
"inputs_embeds": inputs_embeds,
"pad_token_id": 0,
"eos_token_id": terminators,
"streamer": streamer,
}
generation_kwargs.update(kwargs)
thread = Thread(target=self.llm.generate, kwargs=generation_kwargs)
thread.start()
return streamer
def _decode_text(self, result_ids, tokenizer):
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
result_text = []
for result in result_ids:
result = result[result != 0]
if result[0] == tokenizer.bos_id:
result = result[1:]
if result[-1] in terminators:
result = result[:-1]
result_text.append(tokenizer.decode(result))
return result_text
def get_sys_prompt(self, ref_audio=None, mode="default", language="zh"):
"""
Choose different system prompts according to different tasks
Args:
ref_audio: if ref_audio is not None, will use the voice cloning prompts, and the voice
generated by the model will refer to the timbre of ref audio
mode:
"default": default system prompt and not refer to any task
"omni": input video and audio simultaneously
"audio_assistant": Default voice-only mode, the model will use the ref_audio's voice to reply user's question as a helpful assistant.
"audio_roleplay": Roleplay voice-only mode, the model will use the ref_audio's voice to reply, and also role-play the character based on the audio prompt.
"voice_cloning": TTS mode, the model will clone the voice of ref_audio.
language: prompts language, the model has the ability to automatically select the response language
based on the question language
Returns:
"""
if ref_audio is not None:
assert isinstance(ref_audio, np.ndarray), "ref_audio error"
if mode == "omni":
if language == "zh":
sys_prompt = "你是一个AI助手。你能接受视频,音频和文本输入并输出语音和文本。"
vc_prompt_prefix = sys_prompt + "模仿输入音频中的声音特征。"
vc_prompt_suffix = "作为助手,你将使用这种声音风格说话。"
else:
sys_prompt = "You are a helpful assistant. You can accept video, audio and text input and output voice and text. "
vc_prompt_prefix = sys_prompt + "Clone the voice in the provided audio prompt."
vc_prompt_suffix = "As an assistant, you will speak using this voice style."
if ref_audio is not None:
sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}
else:
sys_msgs = {"role": "user", "content": [sys_prompt]}
return sys_msgs
elif mode == "audio_assistant":
if language == "zh":
vc_prompt_prefix = "模仿输入音频中的声音特征。"
vc_prompt_suffix = "作为助手,你将使用这种声音风格说话。"
else:
vc_prompt_prefix = "Use the voice in the audio prompt to synthesize new content."
vc_prompt_suffix = "You are a helpful assistant with the above voice style."
if ref_audio is not None:
sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}
else:
logger.warning(
"Warning: ref_audio is None, speech generation will be performed based on the default voice."
)
sys_msgs = {"role": "user", "content": ["Use the <reserved_53> voice.", vc_prompt_suffix]}
return sys_msgs
elif mode == "audio_roleplay":
if language == "zh":
vc_prompt_prefix = "模仿输入音频中的声音特征。"
vc_prompt_suffix = "假装你是上述音频中的人物,与我进行对话。"
else:
vc_prompt_prefix = "Clone the voice in the provided audio prompt."
vc_prompt_suffix = "Try to role-play the character based on the audio prompt above."
if ref_audio is not None:
sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}
else:
print("Warning: ref_audio is None, speech generation will be performed based on the default voice.")
sys_msgs = {"role": "user", "content": ["Use the <reserved_53> voice.", vc_prompt_suffix]}
return sys_msgs
elif mode == "voice_cloning":
if language == "zh":
vc_prompt_prefix = "模仿输入音频中的声音特征。"
else:
vc_prompt_prefix = "Clone the voice in the provided audio prompt."
if ref_audio is not None:
sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio]}
else:
raise ValueError("ref_audio con't be None in voice_cloning mode.")
return sys_msgs
else:
sys_prompt = "You are a helpful assistant. You can accept audio and text input and output voice and text."
sys_msgs = {"role": "user", "content": [sys_prompt]}
return sys_msgs
def generate(
self,
input_ids=None,
pixel_values=None,
tgt_sizes=None,
audio_features=[],
audio_feature_lens=None,
image_bound=None,
audio_bounds=None,
spk_bounds=None,
attention_mask=None,
tokenizer=None,
vision_hidden_states=None,
stream=False,
decode_text=True,
**kwargs,
):
assert input_ids is not None
assert len(input_ids) == len(pixel_values)
model_inputs = {
"input_ids": input_ids,
"audio_features": audio_features,
"audio_feature_lens": audio_feature_lens,
"image_bound": image_bound,
"audio_bounds": audio_bounds,
"spk_bounds": spk_bounds,
}
if vision_hidden_states is None:
model_inputs["pixel_values"] = pixel_values
model_inputs["tgt_sizes"] = tgt_sizes
else:
model_inputs["vision_hidden_states"] = vision_hidden_states
model_output = {}
with torch.inference_mode():
model_inputs["inputs_embeds"], vision_hidden_states = self.get_vllm_embedding(model_inputs)
model_inputs["inputs_embeds"] = self.get_omni_embedding(
model_inputs,
input_embeddings=model_inputs["inputs_embeds"],
chunk_length=self.config.audio_chunk_length,
)
if stream:
result = self._decode_stream(model_inputs["inputs_embeds"], tokenizer, **kwargs)
# if stream return TextIteratorStreamer and output is empty
outputs = {}
else:
outputs = self._decode(model_inputs["inputs_embeds"], tokenizer, attention_mask, **kwargs) #怎么每次要调用config
result = self._decode_text(outputs.sequences, tokenizer)
if decode_text is False:
return outputs
return result, outputs
def chat(
self,
image=None,
msgs=None,
tokenizer=None,
processor=None,
vision_hidden_states=None,
max_new_tokens=2048,
min_new_tokens=0,
sampling=True,
max_inp_length=32768,
stream=False,
chunk_input=True,
omni_input=False,
max_slice_nums=None,
use_image_id=None,
use_tts_template=False,
generate_audio=False,
return_spk_embed=False,
return_dict=False,
output_audio_path=None,
**kwargs,
):
"""
Unified chat function
Args:
image: use for batch_size=1 vqa, It is not recommended to continue to use this parameter
msgs: the input chat msgs, support text: (string) / image: (PIL.Image) / audio (numpy.ndarray)
tokenizer: tokenizer for llm
processor: if None, use the default processor
max_new_tokens: the maximum length of the generation
min_new_tokens: the minimum length of the generation
sampling: whether to use sampling decoding or beam search decoding
max_inp_length: the maximum length of input
stream: whether to return generator, only used when tts is not required
chunk_input: whether to split audio into 1s chunks
omni_input: determine whether it is omni mode
max_slice_nums: control the maximum number of image slices
use_image_id: for video understanding or omni understanding, use_image_id should be False
use_tts_template: if the msgs contain audio, use_tts_template should be True
generate_audio: whether to generate audio output, only used when return_dict=True
return_spk_embed: whether to return spk embedding, only used when return_dict=True
return_dict: whether to return dict
output_audio_path: audio save path when generate_audio
**kwargs:
"""
if isinstance(msgs[0], list):
batched = True
else:
batched = False
if generate_audio or return_spk_embed:
return_dict = True
msgs_list = msgs
images_list = image
if batched is False:
images_list, msgs_list = [images_list], [msgs_list]
else:
assert images_list is None, "Please integrate image to msgs when using batch inference."
images_list = [None] * len(msgs_list)
assert len(images_list) == len(msgs_list), "The batch dim of images_list and msgs_list should be the same."
if processor is None:
if self.processor is None:
self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
processor = self.processor
assert (
self.config.query_num == processor.image_processor.image_feature_size
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
assert (
self.config.patch_size == processor.image_processor.patch_size
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
assert (
self.config.use_image_id == processor.image_processor.use_image_id
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
assert (
self.config.slice_config.max_slice_nums == processor.image_processor.max_slice_nums
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
assert (
self.config.slice_mode == processor.image_processor.slice_mode
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
prompts_lists = []
input_images_list = []
input_audios_list = []
audio_parts_list = []
for image, msgs in zip(images_list, msgs_list):
if isinstance(msgs, str):
msgs = json.loads(msgs)
copy_msgs = deepcopy(msgs)
assert len(msgs) > 0, "msgs is empty"
assert sampling or not stream, "if use stream mode, make sure sampling=True"
if image is not None and isinstance(copy_msgs[0]["content"], str):
copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]]
images = []
audios = []
audio_parts = []
for i, msg in enumerate(copy_msgs):
role = msg["role"]
content = msg["content"]
assert role in ["system", "user", "assistant"]
if i == 0:
assert role in ["user", "system"], "The role of first msg should be user"
if isinstance(content, str):
content = [content]
cur_msgs = []
for c in content:
if isinstance(c, Image.Image):
images.append(c)
cur_msgs.append("(<image>./</image>)")
elif isinstance(c, np.ndarray): # audio
audios.append(c)
audio_parts.append(i)
cur_msgs.append("(<audio>./</audio>)")
use_tts_template = True
elif isinstance(c, str):
cur_msgs.append(c)
if omni_input:
msg["content"] = "".join(cur_msgs)
else:
msg["content"] = "\n".join(cur_msgs)
prompts_lists.append(
processor.tokenizer.apply_chat_template(
copy_msgs,
tokenize=False,
add_generation_prompt=True,
chat_template=self.default_tts_chat_template if use_tts_template else None,
)
)
input_images_list.append(images)
input_audios_list.append(audios)
audio_parts_list.append(audio_parts)
inputs = processor(
prompts_lists,
input_images_list,
input_audios_list,
audio_parts_list,
max_slice_nums=max_slice_nums,
use_image_id=use_image_id,
chunk_input=chunk_input,
return_tensors="pt",
max_length=max_inp_length,
).to(self.device)
if sampling:
generation_config = {
"top_p": 0.8,
"top_k": 100,
"temperature": 0.7,
"do_sample": True,
"repetition_penalty": 1.05,
}
else:
generation_config = {
"num_beams": 3,
"repetition_penalty": 1.2,
}
if min_new_tokens > 0:
generation_config["min_new_tokens"] = min_new_tokens
generation_config.update((k, kwargs[k]) for k in generation_config.keys() & kwargs.keys())
inputs.pop("image_sizes")
with torch.inference_mode():
res, outputs = self.generate(
**inputs,
tokenizer=tokenizer,
max_new_tokens=max_new_tokens,
vision_hidden_states=vision_hidden_states,
stream=stream,
**generation_config,
)
if stream:
def stream_gen():
for text in res:
for term in self.terminators:
text = text.replace(term, "")
yield text
if return_dict:
return OmniOutput(text=stream_gen())
else:
return stream_gen()
else:
spk_embeds = wav_numpy = sr = None
if batched:
answer = res
else:
answer = res[0]
if use_tts_template and generate_audio:
mel_spec = self._generate_mel_spec(inputs, outputs, answer)
wav_numpy, sr = self.decode_mel_to_audio(mel_spec, output_audio_path)
if return_spk_embed:
spk_embeds = self._get_last_spk_embeds(inputs, outputs)
if isinstance(answer, list):
answer = [i.replace(tokenizer.tts_end, "") for i in answer]
else:
answer = answer.replace(tokenizer.tts_end, "")
if return_dict:
return OmniOutput(text=answer, spk_embeds=spk_embeds, audio_wav=wav_numpy, sampling_rate=sr)
else:
return answer
def _decode_hidden(self, result_ids, last_hidden_states, tokenizer):
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators] #self.terminators=['<|im_end|>', '<|endoftext|>']
hidden_states = torch.concat([h[:,-1:] for h in last_hidden_states],dim=1)
hidden_states_unpad = []
result_text_unpad = []
text_token_len = []
for id, result in enumerate(result_ids):
hidden_states_i = hidden_states[id, result != 0, :]
result = result[result!=0]
if result[0] == tokenizer.bos_id:
result = result[1:]
hidden_states_i = hidden_states_i[1:]
if result[-1] in terminators:
result = result[:-1]
hidden_states_i = hidden_states_i[:-1]
if result[-1] == 151692:
#'<|tts_eos|>'
result = result[:-1]
hidden_states_i = hidden_states_i[:-1]
result_text_unpad.append(tokenizer.decode(result))
hidden_states_unpad.append(hidden_states_i)
text_token_len.append(len(result))
return text_token_len, hidden_states, hidden_states_unpad, result_text_unpad
def get_hidden(
self,
image=None,
msgs=None,
tokenizer=None,
processor=None,
vision_hidden_states=None,
max_new_tokens=2048,
min_new_tokens=0,
sampling=True,
max_inp_length=32768,
stream=False,
chunk_input=True,
omni_input=False,
max_slice_nums=None,
use_image_id=None,
use_tts_template=False,
generate_audio=False,
return_spk_embed=False,
**kwargs,
):
if isinstance(msgs[0], list):
batched = True
else:
batched = False
if generate_audio or return_spk_embed:
return_dict = True
msgs_list = msgs
images_list = image
if batched is False:
images_list, msgs_list = [images_list], [msgs_list]
else:
assert images_list is None, "Please integrate image to msgs when using batch inference."
images_list = [None] * len(msgs_list)
assert len(images_list) == len(msgs_list), "The batch dim of images_list and msgs_list should be the same."
if processor is None:
if self.processor is None:
self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
processor = self.processor
assert (
self.config.query_num == processor.image_processor.image_feature_size
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
assert (
self.config.patch_size == processor.image_processor.patch_size
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
assert (
self.config.use_image_id == processor.image_processor.use_image_id
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
assert (
self.config.slice_config.max_slice_nums == processor.image_processor.max_slice_nums
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
assert (
self.config.slice_mode == processor.image_processor.slice_mode
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
prompts_lists = []
input_images_list = []
input_audios_list = []
audio_parts_list = []
for image, msgs in zip(images_list, msgs_list):
if isinstance(msgs, str):
msgs = json.loads(msgs)
copy_msgs = deepcopy(msgs)
assert len(msgs) > 0, "msgs is empty"
assert sampling or not stream, "if use stream mode, make sure sampling=True"
# if image is not None and isinstance(copy_msgs[0]["content"], str):
# copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]]
images = []
audios = []
audio_parts = []
for i, msg in enumerate(copy_msgs):
role = msg["role"]
content = msg["content"]
assert role in ["system", "user", "assistant"]
if i == 0:
assert role in ["user", "system"], "The role of first msg should be user"
if isinstance(content, str):
content = [content]
cur_msgs = []
for c in content:
if isinstance(c, Image.Image):
images.append(c)
cur_msgs.append("(<image>./</image>)")
elif isinstance(c, np.ndarray): # audio
audios.append(c)
audio_parts.append(i)
cur_msgs.append("(<audio>./</audio>)")
use_tts_template = True
elif isinstance(c, str):
cur_msgs.append(c)
if omni_input:
msg["content"] = "".join(cur_msgs)
else:
msg["content"] = "\n".join(cur_msgs)
prompts_lists.append(
processor.tokenizer.apply_chat_template(
copy_msgs,
tokenize=False,
add_generation_prompt=True,
chat_template=self.default_tts_chat_template if use_tts_template else None,
)
)
input_images_list.append(images)
input_audios_list.append(audios)
audio_parts_list.append(audio_parts)
inputs = processor(
prompts_lists,
input_images_list,
input_audios_list,
audio_parts_list,
max_slice_nums=max_slice_nums,
use_image_id=use_image_id,
chunk_input=chunk_input,
return_tensors="pt",
max_length=max_inp_length,
).to(self.device)
if sampling:
generation_config = {
"top_p": 0.8,
"top_k": 100,
"temperature": 0.7,
"do_sample": True,
"repetition_penalty": 1.05,
}
else:
generation_config = {
"num_beams": 3,
"repetition_penalty": 1.2,
}
if min_new_tokens > 0:
generation_config["min_new_tokens"] = min_new_tokens
generation_config.update((k, kwargs[k]) for k in generation_config.keys() & kwargs.keys())
inputs.pop("image_sizes")
# with torch.inference_mode():
with torch.no_grad():
res, outputs = self.generate(
**inputs,
tokenizer=tokenizer,
max_new_tokens=max_new_tokens,
vision_hidden_states=vision_hidden_states,
stream=stream,
**generation_config,
)
last_hidden_states = [hs[-1] for hs in outputs.hidden_states]
text_token = deepcopy(outputs.sequences)
text_token_len, hidden_states, hidden_states_unpad, text_unpad = self._decode_hidden(text_token, last_hidden_states, tokenizer)
for id in range(len(text_token)):
len_ = text_token_len[id]
text_token[id, len_:] = 0
hidden_states[id, len_:] = 0
max_len = max(text_token_len)
text_token = text_token[:, :max_len]
hidden_states = hidden_states[:, :max_len]
return text_unpad, text_token, torch.Tensor(text_token_len).to(torch.int32), hidden_states
def get_hidden_forward(self,data,**kwargs,):
vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
if self.config.init_audio:
vllm_embedding = self.get_omni_embedding(
data, input_embeddings=vllm_embedding, chunk_length=self.config.audio_chunk_length
)
position_ids = data["position_ids"]
if position_ids.dtype != torch.int64:
position_ids = position_ids.long()
# compatible with llama factory
for key in ["input_ids", "inputs_embeds", "position_ids"]:
if key in kwargs:
del kwargs[key]
outputs = self.llm(input_ids=None, position_ids=position_ids, inputs_embeds=vllm_embedding, output_hidden_states=True, **kwargs)
##计算损失
loss_fct = nn.CrossEntropyLoss()
logits = outputs.logits.view(-1,self.config.vocab_size).contiguous()
labels = data['target'].view(-1).long().contiguous()
# Enable model parallelism
labels = labels.to(logits.device)
loss = loss_fct(logits, labels)
##得到隐藏层特征(根据对话拆分多轮)
last_hidden_states = outputs.hidden_states[-1] #(batch_size, s, 3584)
batch_size = last_hidden_states.shape[0]
new_hidden_states = []
text_token = []
text_token_len = []
for batch_id in range(batch_size):
st_id = -1
end_id = -1
for id in range(len(data['target'][batch_id])):
if data['target'][batch_id][id] != -100 and data['target'][batch_id][id] != 151645 and st_id==-1:
st_id = id+1 #+1是因为target[0]='\n',要去掉
if data['target'][batch_id][id] == 151645 and st_id!=-1: #tokenizer.eos_id
end_id = id
new_hidden_states.append(last_hidden_states[batch_id:batch_id+1,st_id:end_id])
text_token.append(data['target'][batch_id:batch_id+1,st_id:end_id])
text_token_len.append(end_id-st_id)
st_id = -1
##根据filter过滤不满足要求的answer
# assert sum([len(filter_i) for filter_i in data['filter']]) == len(text_token), f"filter data error! filter:{data['filter']}, {data['target']},{len(text_token)}"
filter_bool = [filter_i for batch_filter_i in data['filter'] for filter_i in batch_filter_i]
if sum(filter_bool) == 0:
#没有满足条件的文本可用于训练tts
return None, None, None,loss
new_hidden_states = [new_hidden_states[i] for i in range(len(filter_bool)) if filter_bool[i]]
text_token = [text_token[i] for i in range(len(filter_bool)) if filter_bool[i]]
text_token_len = [text_token_len[i] for i in range(len(filter_bool)) if filter_bool[i]]
max_len = np.max(text_token_len)
##padding
for id, new_hidden_state in enumerate(new_hidden_states):
# new_hidden_state (1,s,3584)
pad_num = max_len-new_hidden_state.shape[1]
if pad_num==0:
continue
new_hidden_states[id] = torch.cat(
[
new_hidden_state,
torch.zeros((1, pad_num, new_hidden_state.shape[-1]), device=new_hidden_state.device),
],
dim=1,
) #(1,max_len,3584)
text_token[id] = torch.cat([text_token[id],torch.zeros((1, pad_num), dtype=text_token[id].dtype, device=text_token[id].device)],dim=1,) #(1,max_len)
new_hidden_states = torch.cat(new_hidden_states, dim=0) #(batch_size,max_len,3584)
text_token = torch.cat(text_token, dim=0) #(batch_size,max_len)
text_token_len = torch.tensor(text_token_len, dtype=torch.int32, device=text_token.device)
##################debug############################
# from transformers import AutoTokenizer
# tokenizer_path = '/mnt/afs/zhoufangru/agent/end2end/pretrained_models/MiniCPM-o-2_6'
# tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True)
# output_ids = torch.argmax(outputs.logits, dim=-1)
# batch_id = 0
# tokenizer.decode(output_ids[batch_id][data['target'][batch_id]!=-100])[1:]
##################debug############################
return text_token, text_token_len, new_hidden_states,loss
@torch.inference_mode()
def streaming_prefill(
self,
session_id,
msgs,
tokenizer,
omni_input=True,
max_slice_nums=None,
ls_temperature=1.0,
**kwargs,
):
"""
Streaming video/audio input and output audio stream, Only support batch_size=1
Args:
session_id: Note: new connection should use a new session_id
"""
assert session_id is not None
if self.session_id is None or session_id != self.session_id: # new session
self.is_first = True
else:
self.is_first = False
images = []
audios = []
assert len(msgs) == 1
copy_msgs = deepcopy(msgs)
msg = copy_msgs[0]
assert msg["role"] in ["system", "user", "assistant"]
content = msg["content"]
cur_msgs = []
for j, c in enumerate(content):
if isinstance(c, Image.Image):
images.append(c)
cur_msgs.append("(<image>./</image>)")
elif isinstance(c, np.ndarray): # audio
audios.append(c)
cur_msgs.append("(<audio>./</audio>)")
elif isinstance(c, str):
cur_msgs.append(c)
else:
logger.error("Invalid content type:", c)
cur_contents = "".join(cur_msgs) if omni_input else "\n".join(cur_msgs)
if not self.is_first and self.new_user_msg and msg["role"] == "user": # new user add im_start
if self.llm_generated:
if self.llm_generate_completed:
msg["content"] = "<|im_end|>\n<|im_start|>user\n" + cur_contents
else: # break llm gen, add tts_eos
msg["content"] = "<|tts_eos|><|im_end|>\n<|im_start|>user\n" + cur_contents
else:
msg["content"] = "<|im_start|>user\n" + cur_contents
self.new_user_msg = False
else:
msg["content"] = cur_contents
if msg["role"] in ["system", "assistant"]:
self.new_user_msg = True
self.audio_past_key_values = None # apm kv cache
if self.is_first:
# init pask_key_values
logger.info(f"new session_id: {session_id}, reset kv cache")
self.reset_session()
self.session_id = session_id
prompt = tokenizer.apply_chat_template(
copy_msgs, tokenize=False, add_generation_prompt=False, chat_template=self.default_tts_chat_template
)
add_special_tokens = True # add bos
else:
prompt = copy_msgs[0]["content"]
add_special_tokens = False
model_inputs = self.processor(
[prompt],
[images],
[audios],
max_slice_nums=1 if max_slice_nums is None else max_slice_nums,
use_image_id=False,
chunk_input=True,
return_tensors="pt",
max_length=None,
sampling_rate=16000,
add_special_tokens=add_special_tokens,
).to(self.device)
# 1. prepare input embeddings
model_inputs["inputs_embeds"], _ = self.get_vllm_embedding(model_inputs)
# get audio embedding with audio_past_key_values
inputs_embeds = self.get_omni_embedding(
model_inputs, input_embeddings=model_inputs["inputs_embeds"], stream_input=True
)
if self.is_first:
# clean audio_past_key_values after first prefill
self.audio_past_key_values = None
if self.llm_past_key_values is not None:
cache_length = self.llm_past_key_values[0][0].shape[2]
else:
cache_length = 0
attention_mask = torch.ones((1, cache_length + inputs_embeds.shape[1]), dtype=torch.bool, device=self.device)
# 2. do prefill and predict listen/speak label
outputs = self.llm(
past_key_values=self.llm_past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=None, # position_ids,
use_cache=True,
return_dict=True,
)
self.llm_past_key_values = outputs["past_key_values"]
return
@torch.inference_mode()
def streaming_generate(
self,
session_id,
tokenizer,
max_new_tokens=512,
min_new_tokens=0,
sampling=True,
enable_regenerate=False,
**kwargs,
):
"""
Streaming video/audio input and output audio stream
Args:
"""
if sampling:
generation_config = {
"top_p": 0.8,
"top_k": 100,
"temperature": 0.7,
"do_sample": True,
"repetition_penalty": 1.05,
}
else:
generation_config = {
"num_beams": 3,
"repetition_penalty": 1.2,
}
generation_config["min_new_tokens"] = min_new_tokens
generation_config.update((k, kwargs[k]) for k in generation_config.keys() & kwargs.keys())
# do generate
# reset buffer
self.new_user_msg = True
self.llm_generated = True
self.llm_generate_completed = False
self.audio_past_key_values = None # apm kv cache
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
generate_prompt = "<|im_end|>\n<|im_start|>assistant\n<|spk_bos|><|spk|><|spk_eos|><|tts_bos|>"
input_ids = tokenizer(generate_prompt, return_tensors="pt", add_special_tokens=False)["input_ids"].cuda()
spk_start_idx = torch.where(input_ids[0] == tokenizer.spk_start_id)[0]
spk_end_idx = torch.where(input_ids[0] == tokenizer.spk_end_id)[0]
spk_bounds = [
torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)])
] # List[Tensor], (1,2)
cache_length = past_length = self.llm_past_key_values[0][0].shape[2]
attention_mask = torch.ones((1, cache_length + input_ids.shape[1]), dtype=torch.bool, device=self.device)
generation_config["max_new_tokens"] = max_new_tokens
streamer = self.llm_generate_chunk(input_ids, attention_mask, tokenizer, terminators, generation_config)
return streamer
def llm_generate_chunk(self, input_ids, attention_mask, tokenizer, terminators, generation_config):
def check_uncompleted_token(ids):
cur_text = tokenizer.decode(ids)
end = len(ids)
while cur_text[-1] == "�":
end -= 1
if end == 0:
break
cur_text = tokenizer.decode(ids[:end])
return end
max_new_tokens = int(generation_config.pop("max_new_tokens", 2048))
new_len = 0
eos = False
left_ids = None
while True:
outputs = self.llm.generate(
input_ids=input_ids,
past_key_values=self.llm_past_key_values,
attention_mask=attention_mask,
use_cache=True,
max_new_tokens=3, # reduce first token delay
pad_token_id=0,
output_hidden_states=True,
return_dict_in_generate=True,
eos_token_id=terminators,
**generation_config,
)
if outputs.sequences[0, -1] in terminators:
eos = True
input_len = input_ids.shape[1]
cur_ids = outputs.sequences[:, input_len:] #(batch_size,max_new_tokens)
cur_hidden_states = torch.concat([hidden_states[-1][:, -1:] for hidden_states in outputs.hidden_states],dim=1) #(batch_size, max_new_tokens, 3584)
new_len += cur_ids.shape[1]
if left_ids is not None and left_ids.shape[1] > 0:
cur_ids = torch.cat([left_ids, cur_ids], dim=1)
end = check_uncompleted_token(cur_ids[0])
left_ids = cur_ids[:, end:]
cur_ids = cur_ids[:, :end]
if 151692 in cur_ids[0].cpu().tolist():
#<|tts_eos|>
end = cur_ids[0].cpu().tolist().index(151692)
eos = True
cur_ids = cur_ids[:, :end]
cur_hidden_states = cur_hidden_states[:, :end]
text = self._decode_text(cur_ids, tokenizer)[0] if end > 0 else ""
self.llm_past_key_values = outputs.past_key_values
input_ids = outputs.sequences[:, -1:]
cache_length = past_length = self.llm_past_key_values[0][0].shape[2]
attention_mask = torch.ones((1, cache_length + input_ids.shape[1]), dtype=torch.bool, device=self.device)
res = {"text": text, "text_token":cur_ids, "hidden_states": cur_hidden_states}
yield res
if eos:
self.llm_generate_completed = True
break
if new_len >= max_new_tokens:
logger.debug(f"LLM generation {new_len} exceeds max_new_tokens({max_new_tokens}), break.")
break
class MultiModalProjector(nn.Module):
def __init__(self, in_dim, out_dim):
super().__init__()
self.linear1 = nn.Linear(in_features=in_dim, out_features=out_dim, bias=True)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(in_features=out_dim, out_features=out_dim, bias=True)
def forward(self, audio_features):
hidden_states = self.relu(self.linear1(audio_features))
hidden_states = self.linear2(hidden_states)
return hidden_states
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
**kwargs,
):
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
else:
cache_length = past_length = past_key_values[0][0].shape[2]
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# This clo≠clo≠clone call is needed to avoid recapturing cuda graphs with →rch.comπ≤→rch.comπ≤torch.compile's mode=reduce−overheadmode=reduce-overheadmode="reduce-overhead, as otherwise the input positionidspositionidsposition_ids would have various stride during the decoding. Here, simply using .contiguous().contiguous().contiguous() is not sufficient as in the batch size = 1 case, positionidspositionidsposition_ids is already contiguous but with varying stride which retriggers a capture.
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
# if ∈putsembeds∈putsembedsinputs_embeds are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
else:
# The clone here is for the same reason as for positionidspositionidsposition_ids.
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
if model_inputs["inputs_embeds"] is not None:
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
device = model_inputs["inputs_embeds"].device
else:
batch_size, sequence_length = model_inputs["input_ids"].shape
device = model_inputs["input_ids"].device
dtype = self.lm_head.weight.dtype
min_dtype = torch.finfo(dtype).min
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=past_key_values.get_max_length(),
dtype=dtype,
device=device,
min_dtype=min_dtype,
cache_position=cache_position,
batch_size=batch_size,
)
model_inputs.update(
{
"position_ids": position_ids,
# "cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
}
)
return model_inputs
# Copied from transformers.models.whisper.modeling_whisper.WhisperEncoderLayer and add use_cache for streaming inference
class MiniCPMWhisperEncoderLayer(nn.Module):
def __init__(self, config: WhisperConfig, layer_idx: int = None):
super().__init__()
self.embed_dim = config.d_model #1024
self.self_attn = WHISPER_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
config=config,
layer_idx=layer_idx,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
layer_head_mask: torch.Tensor,
output_attentions: bool = False,
past_key_values: Optional[EncoderDecoderCache] = None,
use_cache: Optional[bool] = False,
) -> torch.Tensor:
r"""
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, embed_dim)`):
Hidden states to be fed into the encoder layer.
attention_mask (`torch.FloatTensor` of shape `(batch_size, 1, tgt_len, src_len)`):
Attention mask where padding elements are indicated by large negative values.
layer_head_mask (`torch.FloatTensor` of shape `(encoder_attention_heads,)`):
Mask to nullify selected heads of the attention modules.
output_attentions (`bool`, *optional*):
Whether or not to return the attention weights.
past_key_values (`EncoderDecoderCache`, *optional*):
Past key-value pairs used for incremental decoding.
use_cache (`bool`, *optional*):
Whether or not to return updated `past_key_values` for caching.
Returns:
A tuple of shape `(hidden_states, optional(attn_weights), optional(past_key_values))`.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights, past_key_values = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
past_key_value=past_key_values,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
if use_cache:
outputs += (past_key_values,)
return outputs
# Copied from from transformers.models.whisper.modeling_whisper.WhisperEncoder and add use_cache for streaming inference
class MiniCPMWhisperEncoder(WhisperEncoder):
def __init__(self, config: WhisperConfig):
# print(config)
super().__init__(config)
self.layers = nn.ModuleList(
[MiniCPMWhisperEncoderLayer(config, layer_idx=i) for i in range(config.encoder_layers)]
)
def forward(
self,
input_features,
attention_mask=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
past_key_values: Optional[EncoderDecoderCache] = None,
use_cache: Optional[bool] = None,
):
r"""
Forward pass of the Whisper encoder.
Args:
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`):
Float values of log-mel features extracted from the raw audio waveform. Typically generated
by a feature extractor (e.g., `WhisperFeatureExtractor`) that processes `.flac` or `.wav`
files into padded 2D mel spectrogram frames. These features are projected via convolution layers
(`conv1` and `conv2`) and then transformed into embeddings for the encoder.
attention_mask (`torch.Tensor`, *optional*):
Not used by Whisper for masking `input_features`, but included for API compatibility with
other models. If provided, it is simply ignored within the model. By default, Whisper
effectively ignores silence in the input log-mel spectrogram.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected attention heads. The elements should be either 1 or 0, where:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked** (i.e., the attention head is dropped).
output_attentions (`bool`, *optional*):
Whether or not to return the attention tensors of all encoder layers. If set to `True`, the
returned tuple (or `BaseModelOutputWithPast`) will contain an additional element with
attention weights for each encoder layer.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. If set to `True`, the returned
tuple (or `BaseModelOutputWithPast`) will contain a tuple of hidden states, including the
initial embedding output as well as the outputs of each layer.
return_dict (`bool`, *optional*):
Whether or not to return a `BaseModelOutputWithPast` (a subclass of `ModelOutput`) instead
of a plain tuple. If set to `True`, the output will be a `BaseModelOutputWithPast` object,
otherwise it will be a tuple.
past_key_values (`EncoderDecoderCache`, *optional*):
When using caching for faster inference, this is an object that stores the key-value pairs
for attention states. If provided, the model will append new states to the existing cache
and return the updated cache. This speeds up sequential decoding or chunked inference.
- If `past_key_values` is `None`, no past states are used or returned.
- If `past_key_values` is not `None` and `use_cache=True`, the model will use the provided
cache and return the updated cache (as `next_encoder_cache`).
use_cache (`bool`, *optional*):
Whether or not the model should use caching (`past_key_values`) to speed up processing
during inference. When set to `True`, the model will:
- Inspect and use `past_key_values` if provided.
- Return updated `past_key_values` (under the name `next_encoder_cache` in
`BaseModelOutputWithPast`).
Returns:
`BaseModelOutputWithPast` or `tuple` (depending on `return_dict`):
If `return_dict=True`, a `BaseModelOutputWithPast` is returned, which contains:
- **last_hidden_state** (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
The output of the final encoder layer.
- **hidden_states** (`tuple(torch.FloatTensor)`, *optional*, returned if `output_hidden_states=True`):
Hidden states of the model at each layer (including the initial projection).
- **attentions** (`tuple(torch.FloatTensor)`, *optional*, returned if `output_attentions=True`):
Attention weights from each encoder layer.
- **past_key_values** (an object of type `EncoderDecoderCache` or `None`, *optional*):
Updated cache of key-value pairs if `use_cache=True`.
If `return_dict=False`, a tuple is returned, where the format is:
`(last_hidden_state, hidden_states, attentions)`, with `hidden_states` and `attentions`
only present if their respective `output_*` arguments are set to `True`.
Example:
>>> from transformers import AutoFeatureExtractor, WhisperConfig, WhisperForConditionalGeneration
>>> import torch
>>> # Load a feature extractor and a Whisper model
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-tiny.en")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
>>> # Assume you have audio (list of floats or numpy array) loaded from a file
>>> # Then extract the mel features:
>>> input_features = feature_extractor(audio, sampling_rate=16000, return_tensors="pt").input_features
>>> # Forward pass
>>> outputs = model.encoder(
... input_features=input_features,
... output_hidden_states=True,
... output_attentions=True,
... use_cache=True
... )
>>> # Retrieve the last hidden state
>>> last_hidden_state = outputs.last_hidden_state
>>> print(last_hidden_state.shape)
torch.Size([batch_size, seq_length, hidden_size])
>>> # Retrieve the intermediate hidden states if output_hidden_states=True
>>> all_encoder_hidden_states = outputs.hidden_states
>>> # Retrieve attention weights if output_attentions=True
>>> all_encoder_attentions = outputs.attentions
>>> # Retrieve updated past key values if use_cache=True
>>> encoder_cache = outputs.past_key_values
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Ignore copy
input_features = input_features.to(dtype=self.conv1.weight.dtype, device=self.conv1.weight.device)
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
inputs_embeds = inputs_embeds.permute(0, 2, 1)
# import ipdb; ipdb.set_trace()
embed_pos = self.embed_positions.weight
if embed_pos.shape[0] == 0:
#分布式训练
params_to_gather = [param for param in self.embed_positions.parameters()]
with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=0):
embed_pos = deepcopy(self.embed_positions.weight)
# import ipdb; ipdb.set_trace()
past_key_values_length = 0
if use_cache:
if past_key_values is None:
past_key_values = EncoderDecoderCache(DynamicCache(), DynamicCache())
elif isinstance(past_key_values, list):
past_key_values = EncoderDecoderCache(DynamicCache.from_legacy_cache(past_key_values), DynamicCache())
elif isinstance(past_key_values, DynamicCache):
past_key_values = EncoderDecoderCache(past_key_values, DynamicCache())
else:
pass
past_key_values_length = past_key_values.self_attention_cache.get_usable_length(inputs_embeds.shape[1])
if inputs_embeds.shape[1] + past_key_values_length > embed_pos.shape[0]:
logger.warning("seems the audio is longer than 30s. repeating the last part of the audio")
embed_pos_front = embed_pos[past_key_values_length:, :]
embed_pos = torch.cat(
(
embed_pos_front,
torch.repeat_interleave(
embed_pos[-1, :].unsqueeze(0),
inputs_embeds.shape[1] - embed_pos.shape[0] + past_key_values_length,
dim=0,
),
)
)
else:
embed_pos = embed_pos[past_key_values_length : inputs_embeds.shape[1] + past_key_values_length, :]
else:
embed_pos = embed_pos[: inputs_embeds.shape[1], :]
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
assert head_mask.size()[0] == (
len(self.layers)
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
# Ignore copy
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
past_key_values,
use_cache,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
past_key_values=past_key_values,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_encoder_cache = layer_outputs[2 if output_attentions else 1]
else:
next_encoder_cache = None
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
hidden_states=encoder_states,
attentions=all_attentions,
past_key_values=next_encoder_cache,
)
|