File size: 86,410 Bytes
7c564b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
# coding=utf-8
# Copyright 2025 The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import logging
import math
import os
import types
from collections.abc import Iterator
from copy import deepcopy
from dataclasses import dataclass
from threading import Thread
from typing import List
from typing import Literal
from typing import Optional
from typing import Tuple
from typing import Union

import numpy as np
import soundfile as sf
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils.parametrize as P
from huggingface_hub import hf_hub_download
from PIL import Image
from torch.nn.utils.parametrizations import weight_norm
from tqdm import tqdm
from transformers import AutoProcessor
from transformers import BertTokenizerFast
from transformers import LlamaConfig
from transformers import LlamaModel
# from transformers import LogitsWarper
from transformers import LogitsProcessor
from transformers import PreTrainedModel
from transformers import Qwen2ForCausalLM
from transformers import Qwen2PreTrainedModel
from transformers import TextIteratorStreamer
from transformers import TopKLogitsWarper
from transformers import TopPLogitsWarper
from transformers.cache_utils import Cache
from transformers.cache_utils import DynamicCache
from transformers.cache_utils import EncoderDecoderCache
from transformers.cache_utils import StaticCache
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.modeling_outputs import ModelOutput
from transformers.models.whisper.modeling_whisper import ACT2FN
from transformers.models.whisper.modeling_whisper import WHISPER_ATTENTION_CLASSES
from transformers.models.whisper.modeling_whisper import WhisperConfig
from transformers.models.whisper.modeling_whisper import WhisperEncoder

try:
    from vector_quantize_pytorch import GroupedResidualFSQ
    from vocos import Vocos
    from vocos.pretrained import instantiate_class

    _tts_deps = True
except:
    _tts_deps = False

from .configuration_minicpm import ConditionalChatTTSConfig
from .configuration_minicpm import MiniCPMOConfig
from .modeling_navit_siglip import SiglipVisionTransformer
from .image_processing_minicpmv import MiniCPMOBatchFeature
from .resampler import Resampler
from .utils import NumberToTextConverter
from .utils import sentence_end
from .utils import VoiceChecker

logger = logging.getLogger(__name__)


@dataclass
class OmniOutput(ModelOutput):
    text: Optional[Union[str, List[str], Iterator]] = None
    spk_embeds: Optional[torch.FloatTensor] = None
    audio_wav: Optional[np.ndarray] = None
    sampling_rate: Optional[int] = None


class MiniCPMOPreTrainedModel(Qwen2PreTrainedModel):
    config_class = MiniCPMOConfig


class MiniCPMO(MiniCPMOPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.llm = Qwen2ForCausalLM(config)
        self.llm.prepare_inputs_for_generation = types.MethodType(prepare_inputs_for_generation, self.llm)  # patch llm

        self.embed_dim = self.llm.config.hidden_size
        # init vision module
        if self.config.init_vision:
            self.vpm = self.init_vision_module()
            self.vision_dim = self.vpm.embed_dim
            self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)

        # init audio module
        if self.config.init_audio:
            self.apm = self.init_audio_module()
            audio_output_dim = int(self.apm.config.encoder_ffn_dim // 4)
            self.audio_avg_pooler = nn.AvgPool1d(self.config.audio_pool_step, stride=self.config.audio_pool_step)
            self.audio_projection_layer = MultiModalProjector(in_dim=audio_output_dim, out_dim=self.embed_dim)
            self.audio_encoder_layer = -1

        # init tts module
        # if self.config.init_tts:
        #     assert _tts_deps, "please make sure vector_quantize_pytorch and vocos are installed."
        #     self.tts = self.init_tts_module()

        self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)

        self.terminators = ["<|im_end|>", "<|endoftext|>"]

        self.default_tts_chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n<|spk_bos|><|spk|><|spk_eos|><|tts_bos|>' }}{% endif %}"
        self.force_no_stop = False

        # for stream api
        self.reset_session()

    def reset_session(self):
        self.session_id = None
        self.new_user_msg = True
        self.llm_generated = False
        self.llm_generate_completed = False
        self.llm_past_key_values = None
        self.audio_past_key_values = None  # apm kv cache

    def init_tts(
        self,
        tts_text_tokenizer_path=None,
        vocos_ckpt_path=None,
    ):
        """
        load tts tokenizer and vocos
        1. try load form local 2. try load from huggingface
        """
        from .processing_minicpmo import ChatTTSProcessor

        if tts_text_tokenizer_path is None:
            tts_text_tokenizer_path = os.path.join(self.config._name_or_path, "assets/chattts_tokenizer")
        if not os.path.exists(tts_text_tokenizer_path):
            # try from hf model_id
            tts_text_tokenizer_path = "openbmb/chattts_tokenizer"

        tts_text_tokenizer = BertTokenizerFast.from_pretrained(tts_text_tokenizer_path)
        self.tts_processor = ChatTTSProcessor(text_tokenizer=tts_text_tokenizer)

        if vocos_ckpt_path is None:
            vocos_ckpt_path = os.path.join(self.config._name_or_path, "assets/Vocos.pt")
        if not os.path.exists(vocos_ckpt_path):
            vocos_ckpt_path = hf_hub_download(repo_id="openbmb/MiniCPM-o-2_6", subfolder="assets", filename="Vocos.pt")

        assert os.path.exists(vocos_ckpt_path)
        self.vocos = self.initialize_vocos(vocos_ckpt_path)

    def initialize_vocos(self, ckpt_path):
        feature_extractor = instantiate_class(
            args=(),
            init={
                "class_path": "vocos.feature_extractors.MelSpectrogramFeatures",
                "init_args": {"sample_rate": 24000, "n_fft": 1024, "hop_length": 256, "n_mels": 100},
            },
        )
        backbone = instantiate_class(
            args=(),
            init={
                "class_path": "vocos.models.VocosBackbone",
                "init_args": {"input_channels": 100, "dim": 512, "intermediate_dim": 1536, "num_layers": 8},
            },
        )
        head = instantiate_class(
            args=(),
            init={"class_path": "vocos.heads.ISTFTHead", "init_args": {"dim": 512, "n_fft": 1024, "hop_length": 256}},
        )
        vocos = Vocos(feature_extractor, backbone, head).to("cuda").eval().to(torch.float32)
        vocos.load_state_dict(torch.load(ckpt_path, weights_only=True, mmap=True))
        return vocos

    def init_vision_module(self):
        if self.config._attn_implementation == "flash_attention_2":
            self.config.vision_config._attn_implementation = "flash_attention_2"
        else:
            self.config.vision_config._attn_implementation = "eager"
        model = SiglipVisionTransformer(self.config.vision_config)
        if self.config.drop_vision_last_layer:
            model.encoder.layers = model.encoder.layers[:-1]

        setattr(model, "embed_dim", model.embeddings.embed_dim)
        setattr(model, "patch_size", model.embeddings.patch_size)

        return model

    def init_resampler(self, embed_dim, vision_dim):
        return Resampler(
            num_queries=self.config.query_num,
            embed_dim=embed_dim,
            num_heads=embed_dim // 128,
            kv_dim=vision_dim,
            adaptive=True,
        )

    def init_audio_module(self):
        model = MiniCPMWhisperEncoder(self.config.audio_config)
        return model

    def init_tts_module(self):
        model = ConditionalChatTTS(self.config.tts_config)
        return model

    def get_input_embeddings(self):
        return self.llm.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.llm.embed_tokens = value

    def get_output_embeddings(self):
        return self.llm.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.llm.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.llm = decoder

    def get_decoder(self):
        return self.llm

    def subsequent_chunk_mask(
        self,
        size: int,
        chunk_size: int,
        num_left_chunks: int = -1,
        device: torch.device = torch.device("cpu"),
        num_lookhead: int = 0,
    ) -> torch.Tensor:
        """Create mask for subsequent steps (size, size) with chunk size,
        this is for streaming encoder

        Args:
            size (int): size of mask
            chunk_size (int): size of chunk
            num_left_chunks (int): number of left chunks
                <0: use full chunk
                >=0: use num_left_chunks
            device (torch.device): "cpu" or "cuda" or torch.Tensor.device

        Returns:
            torch.Tensor: mask

        Examples:
            >>> subsequent_chunk_mask(4, 2)
            [[1, 1, 0, 0],
            [1, 1, 0, 0],
            [1, 1, 1, 1],
            [1, 1, 1, 1]]
        """
        ret = torch.zeros(size, size, device=device, dtype=torch.bool)
        for i in range(size):
            if num_left_chunks < 0:
                start = 0
            else:
                start = max((i // chunk_size - num_left_chunks) * chunk_size, 0)
            ending = min((i // chunk_size + 1) * chunk_size + num_lookhead, size)
            ret[i, start:ending] = True
        return ret

    def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
        """
        Computes the output length of the convolutional layers and the output length of the audio encoder
        """
        input_lengths_after_cnn = (input_lengths - 1) // 2 + 1
        input_lengths_after_pooling = (
            input_lengths_after_cnn - self.config.audio_pool_step
        ) // self.config.audio_pool_step + 1
        input_lengths_after_pooling = input_lengths_after_pooling.to(dtype=torch.int32)

        return input_lengths_after_cnn, input_lengths_after_pooling

    def get_vllm_embedding(self, data):
        """
        Compute all visual embeddings, and set into llm embeddings.
        Args:
            data: Dict
                tgt_sizes: image size after patch embedding
                pixel_values: image features
                image_bound: position of each picture corresponding to input_ids
                input_ids: full input_ids, include placeholder
        Returns:
                embedding with vision, vision_hidden_states
        """
        if "vision_hidden_states" not in data:
            dtype = self.llm.model.embed_tokens.weight.dtype
            device = self.llm.model.embed_tokens.weight.device
            tgt_sizes = data["tgt_sizes"]
            pixel_values_list = data["pixel_values"]
            vision_hidden_states = []
            all_pixel_values = []
            img_cnt = []
            for pixel_values in pixel_values_list:
                img_cnt.append(len(pixel_values))
                all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values])

            # exist image
            if all_pixel_values:
                tgt_sizes = [tgt_size for tgt_size in tgt_sizes if isinstance(tgt_size, torch.Tensor)]
                tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)

                max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1])

                all_pixel_values = torch.nn.utils.rnn.pad_sequence(
                    all_pixel_values, batch_first=True, padding_value=0.0
                )
                B, L, _ = all_pixel_values.shape
                all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)

                patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device)
                for i in range(B):
                    patch_attn_mask[i, 0, : tgt_sizes[i][0] * tgt_sizes[i][1]] = True

                vision_batch_size = self.config.vision_batch_size
                all_pixel_values = all_pixel_values.type(dtype)
                if B > vision_batch_size:
                    hs = []
                    for i in range(0, B, vision_batch_size):
                        start_idx = i
                        end_idx = i + vision_batch_size
                        tmp_hs = self.vpm(
                            all_pixel_values[start_idx:end_idx],
                            patch_attention_mask=patch_attn_mask[start_idx:end_idx],
                            tgt_sizes=tgt_sizes[start_idx:end_idx],
                        ).last_hidden_state
                        hs.append(tmp_hs)
                    vision_embedding = torch.cat(hs, dim=0)
                else:
                    vision_embedding = self.vpm(
                        all_pixel_values, patch_attention_mask=patch_attn_mask, tgt_sizes=tgt_sizes
                    ).last_hidden_state
                vision_embedding = self.resampler(vision_embedding, tgt_sizes)

                start = 0
                for pixel_values in pixel_values_list:
                    img_cnt = len(pixel_values)
                    if img_cnt > 0:
                        vision_hidden_states.append(vision_embedding[start : start + img_cnt])
                        start += img_cnt
                    else:
                        vision_hidden_states.append([])
            else:  # no image
                if self.training:
                    dummy_image = torch.zeros((1, 3, 224, 224), device=device, dtype=dtype)
                    tgt_sizes = torch.Tensor(
                        [[(224 // self.config.patch_size), math.ceil(224 / self.config.patch_size)]]
                    ).type(torch.int32)
                    dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes)
                else:
                    dummy_feature = []
                for _ in range(len(pixel_values_list)):
                    vision_hidden_states.append(dummy_feature)

        else:
            vision_hidden_states = data["vision_hidden_states"]

        if hasattr(self.llm.config, "scale_emb"):
            vllm_embedding = self.llm.model.embed_tokens(data["input_ids"]) * self.llm.config.scale_emb
        else:
            vllm_embedding = self.llm.model.embed_tokens(data["input_ids"])

        new_vllm_embedding = vllm_embedding.clone()
        
        vision_hidden_states = [
            i.type(vllm_embedding.dtype) if isinstance(i, torch.Tensor) else i for i in vision_hidden_states
        ]
        
        bs = len(data["input_ids"])
        for i in range(bs):
            cur_vs_hs = vision_hidden_states[i]
            if len(cur_vs_hs) > 0:
                cur_vllm_emb = vllm_embedding[i]
                cur_image_bound = data["image_bound"][i]
                if len(cur_image_bound) > 0:
                    image_indices = torch.stack(
                        [torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
                    ).to(vllm_embedding.device)

                    new_vllm_embedding[i] = cur_vllm_emb.scatter(
                        0,
                        image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
                        cur_vs_hs.view(-1, cur_vs_hs.shape[-1]),
                    )

                elif self.training:
                    new_vllm_embedding[i] += cur_vs_hs[0].mean() * 0

        return new_vllm_embedding, vision_hidden_states

    def get_audio_embedding_streaming(self, data):
        r"""
        Extract audio embeddings in a streaming manner using cached key-value pairs.

        This method processes incoming audio features incrementally and stores/updates `past_key_values`
        for faster inference on subsequent audio frames. It only supports batch_size=1 and is intended
        for streaming scenarios.

        Args:
            data (dict):
                - **"audio_features"** (`torch.FloatTensor`): Input mel-spectrograms of shape `(batch_size, 80, frames)`.
                - **"audio_feature_lens"** (List[List[int]]): Lengths of each audio segment for each item in the batch.

        Returns:
            List[List[torch.Tensor]]: audio embeddings
        """
        wavforms = data.get("audio_features", [])  # (bs, 80, frames) or [], multi audios need filled in advance
        audio_feature_lens_raw = data.get("audio_feature_lens", [])  # list, [[x1, x2], [y1], [z1]]

        # exist audio
        if len(wavforms) > 0:
            audio_feature_lens = torch.hstack(audio_feature_lens_raw)
            batch_size, _, max_mel_seq_len = wavforms.shape
            assert batch_size == 1
            max_seq_len = (max_mel_seq_len - 1) // 2 + 1

            if self.audio_past_key_values is not None:
                cache_length = self.audio_past_key_values[0][0].shape[2]
                apm_max_len = self.apm.embed_positions.weight.shape[0]
                if cache_length + max_seq_len >= apm_max_len:
                    logger.warning(
                        f"audio_past_key_values length {cache_length + max_seq_len} exceed {apm_max_len}, reset."
                    )
                    self.audio_past_key_values = None

            audio_outputs = self.apm(wavforms, past_key_values=self.audio_past_key_values, use_cache=True)
            audio_states = audio_outputs.last_hidden_state  # [:, :audio_feat_lengths, :]
            self.audio_past_key_values = audio_outputs.past_key_values

            audio_embeds = self.audio_projection_layer(audio_states)

            audio_embeds = audio_embeds.transpose(1, 2)
            audio_embeds = self.audio_avg_pooler(audio_embeds)
            audio_embeds = audio_embeds.transpose(1, 2)

            _, feature_lens_after_pooling = self._get_feat_extract_output_lengths(audio_feature_lens)

            num_audio_tokens = feature_lens_after_pooling

            final_audio_embeds = []
            idx = 0
            for i in range(len(audio_feature_lens_raw)):
                target_audio_embeds = []
                for _ in range(len(audio_feature_lens_raw[i])):
                    target_audio_embeds.append(audio_embeds[idx, : num_audio_tokens[idx], :])
                    idx += 1
                final_audio_embeds.append(target_audio_embeds)
            return final_audio_embeds
        else:
            return []

    def get_audio_embedding(self, data, chunk_length=-1, dummy=True):
        r"""
        Extract full audio embeddings with optional chunk-based attention.

        This method computes embeddings for all audio frames at once, either using full attention (when
        `chunk_length` is -1) or chunk-based attention (when `chunk_length` is a positive number). It does
        not use key-value caching and is suitable for non-streaming inference.

        Args:
            data (dict):
                - **"audio_features"** (`torch.FloatTensor`): Input mel-spectrograms of shape `(batch_size, 80, frames)`.
                - **"audio_feature_lens"** (List[List[int]]): Lengths of each audio segment for each item in the batch.
            chunk_length (int, optional): Determines whether to use full attention (-1) or chunk-based
                attention (>0) during embedding computation.

        Returns:
            List[List[torch.Tensor]]: audio embeddings
        """
        
        wavforms = data.get("audio_features", [])  # (bs, 80, frames) or [], multi audios need filled in advance
        audio_feature_lens_raw = data.get("audio_feature_lens", [])  # list, [[x1, x2], [y1], [z1]]

        # exist audio
        if len(wavforms) > 0:
            audio_feature_lens = torch.hstack(audio_feature_lens_raw)
            batch_size, _, max_mel_seq_len = wavforms.shape
            max_seq_len = (max_mel_seq_len - 1) // 2 + 1

            # Create a sequence tensor of shape (batch_size, max_seq_len)
            seq_range = (
                torch.arange(0, max_seq_len, dtype=audio_feature_lens.dtype, device=audio_feature_lens.device)
                .unsqueeze(0)
                .expand(batch_size, max_seq_len)
            )
            lengths_expand = audio_feature_lens.unsqueeze(1).expand(batch_size, max_seq_len)
            # Create mask
            padding_mask = seq_range >= lengths_expand  # 1 for padded values

            audio_attention_mask_ = padding_mask.view(batch_size, 1, 1, max_seq_len).expand(
                batch_size, 1, max_seq_len, max_seq_len
            )
            audio_attention_mask = audio_attention_mask_.to(
                dtype=self.apm.conv1.weight.dtype, device=self.apm.conv1.weight.device
            )

            if chunk_length > 0:
                chunk_num_frame = int(chunk_length * 50)
                chunk_mask = self.subsequent_chunk_mask(
                    size=max_seq_len,
                    chunk_size=chunk_num_frame,
                    num_left_chunks=-1,
                    device=audio_attention_mask_.device,
                )
                audio_attention_mask_ = torch.logical_or(audio_attention_mask_, torch.logical_not(chunk_mask))

            audio_attention_mask[audio_attention_mask_] = float("-inf")
            audio_states = self.apm(
                wavforms, output_hidden_states=True, attention_mask=audio_attention_mask
            ).hidden_states[self.audio_encoder_layer]
            audio_embeds = self.audio_projection_layer(audio_states)

            audio_embeds = audio_embeds.transpose(1, 2)
            audio_embeds = self.audio_avg_pooler(audio_embeds)
            audio_embeds = audio_embeds.transpose(1, 2)

            _, feature_lens_after_pooling = self._get_feat_extract_output_lengths(audio_feature_lens)

            num_audio_tokens = feature_lens_after_pooling

            final_audio_embeds = []
            idx = 0
            for i in range(len(audio_feature_lens_raw)):
                target_audio_embeds = []
                for _ in range(len(audio_feature_lens_raw[i])):
                    target_audio_embeds.append(audio_embeds[idx, : num_audio_tokens[idx], :])
                    idx += 1
                final_audio_embeds.append(target_audio_embeds)
            return final_audio_embeds
        elif self.training and dummy:
            dtype = self.apm.embed_positions.weight.dtype
            device = self.apm.embed_positions.weight.device

            dummy_wavs = torch.zeros((1, 80, 100), device=device, dtype=dtype)
            audio_states = self.apm(dummy_wavs, output_hidden_states=True).hidden_states[self.audio_encoder_layer]

            audio_embeds = self.audio_projection_layer(audio_states)

            audio_embeds = audio_embeds.transpose(1, 2)
            audio_embeds = self.audio_avg_pooler(audio_embeds)
            audio_embeds = audio_embeds.transpose(1, 2)
            return [audio_embeds]

        else:
            return []

    def get_omni_embedding(self, data, input_embeddings, chunk_length=-1, stream_input=False):
        """
        Args:
            data:
            input_embeddings:
            chunk_length: whisper use full attention or chunk attention
            stream_input: use streaming audio embedding
        Returns:
            final embeddings with audio feature
        """
        if stream_input:
            audio_embeddings = self.get_audio_embedding_streaming(data)
        else:
            audio_embeddings = self.get_audio_embedding(data, chunk_length)

        bs = len(input_embeddings)
        if len(data.get("audio_features", [])) > 0:
            assert len(audio_embeddings) == len(input_embeddings)
            if len(audio_embeddings) > 0:
                audio_bounds = data["audio_bounds"]

                if self.config.chunk_input:
                    for i in range(bs):
                        if not audio_embeddings[i]:
                            continue
                        audio_embs = torch.cat(audio_embeddings[i], dim=0).to(
                            device=input_embeddings.device, dtype=input_embeddings.dtype
                        )
                        audio_start_pos = 0
                        for bound in audio_bounds[i]:
                            audio_len = bound[1] - bound[0]
                            input_embeddings[i, bound[0] : bound[1]] = audio_embs[
                                audio_start_pos : audio_start_pos + audio_len, :
                            ]
                            audio_start_pos += audio_len
                else:
                    for i in range(bs):
                        audio_embs = audio_embeddings[i]
                        bounds = audio_bounds[i]
                        for embs, bound in zip(audio_embs, bounds):
                            audio_indices = torch.arange(bound[0], bound[1], dtype=torch.long).to(
                                input_embeddings.device
                            )

                            if embs.shape[0] != len(audio_indices):
                                raise ValueError(
                                    f"Shape mismatch: Trying to assign embeddings of shape {embs.shape} "
                                    f"to input indices of length {len(audio_indices)}"
                                )
                            input_embeddings[i, audio_indices] = embs.to(input_embeddings.dtype)
        elif self.training:
            for i in range(bs):
                # dummy audio_embeddings
                input_embeddings = input_embeddings + audio_embeddings[0].mean() * 0

        return input_embeddings

    def forward(self, data, **kwargs):
        vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)

        if self.config.init_audio:
            vllm_embedding = self.get_omni_embedding(
                data, input_embeddings=vllm_embedding, chunk_length=self.config.audio_chunk_length
            )

        position_ids = data["position_ids"]
        if position_ids.dtype != torch.int64:
            position_ids = position_ids.long()

        # compatible with llama factory
        for key in ["input_ids", "inputs_embeds", "position_ids"]:
            if key in kwargs:
                del kwargs[key]

        return self.llm(input_ids=None, position_ids=position_ids, inputs_embeds=vllm_embedding, **kwargs)

    def _decode(self, inputs_embeds, tokenizer, attention_mask, **kwargs):
        kwargs.pop("output_hidden_states", None)
        kwargs.pop("return_dict_in_generate", None)
        terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
        outputs = self.llm.generate(
            inputs_embeds=inputs_embeds,
            pad_token_id=0,
            eos_token_id=terminators,
            attention_mask=attention_mask,
            output_hidden_states=True,
            return_dict_in_generate=True,
            **kwargs,
        )

        return outputs

    def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
        terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
        streamer = TextIteratorStreamer(tokenizer=tokenizer)
        generation_kwargs = {
            "inputs_embeds": inputs_embeds,
            "pad_token_id": 0,
            "eos_token_id": terminators,
            "streamer": streamer,
        }
        generation_kwargs.update(kwargs)

        thread = Thread(target=self.llm.generate, kwargs=generation_kwargs)
        thread.start()

        return streamer

    def _decode_text(self, result_ids, tokenizer):
        terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
        result_text = []
        for result in result_ids:
            result = result[result != 0]
            if result[0] == tokenizer.bos_id:
                result = result[1:]
            if result[-1] in terminators:
                result = result[:-1]
            result_text.append(tokenizer.decode(result))
        return result_text

    def get_sys_prompt(self, ref_audio=None, mode="default", language="zh"):
        """
        Choose different system prompts according to different tasks
        Args:
            ref_audio: if ref_audio is not None, will use the voice cloning prompts, and the voice
                       generated by the model will refer to the timbre of ref audio
            mode:
                "default": default system prompt and not refer to any task
                "omni": input video and audio simultaneously
                "audio_assistant": Default voice-only mode, the model will use the ref_audio's voice to reply user's question as a helpful assistant.
                "audio_roleplay": Roleplay voice-only mode, the model will use the ref_audio's voice to reply, and also role-play the character based on the audio prompt.
                "voice_cloning": TTS mode, the model will clone the voice of ref_audio.
            language: prompts language, the model has the ability to automatically select the response language
                    based on the question language
        Returns:

        """
        if ref_audio is not None:
            assert isinstance(ref_audio, np.ndarray), "ref_audio error"
        if mode == "omni":
            if language == "zh":
                sys_prompt = "你是一个AI助手。你能接受视频,音频和文本输入并输出语音和文本。"
                vc_prompt_prefix = sys_prompt + "模仿输入音频中的声音特征。"
                vc_prompt_suffix = "作为助手,你将使用这种声音风格说话。"
            else:
                sys_prompt = "You are a helpful assistant. You can accept video, audio and text input and output voice and text. "
                vc_prompt_prefix = sys_prompt + "Clone the voice in the provided audio prompt."
                vc_prompt_suffix = "As an assistant, you will speak using this voice style."

            if ref_audio is not None:
                sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}

            else:
                sys_msgs = {"role": "user", "content": [sys_prompt]}

            return sys_msgs
        elif mode == "audio_assistant":
            if language == "zh":
                vc_prompt_prefix = "模仿输入音频中的声音特征。"
                vc_prompt_suffix = "作为助手,你将使用这种声音风格说话。"
            else:
                vc_prompt_prefix = "Use the voice in the audio prompt to synthesize new content."
                vc_prompt_suffix = "You are a helpful assistant with the above voice style."

            if ref_audio is not None:
                sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}

            else:
                logger.warning(
                    "Warning: ref_audio is None, speech generation will be performed based on the default voice."
                )
                sys_msgs = {"role": "user", "content": ["Use the <reserved_53> voice.", vc_prompt_suffix]}

            return sys_msgs
        elif mode == "audio_roleplay":
            if language == "zh":
                vc_prompt_prefix = "模仿输入音频中的声音特征。"
                vc_prompt_suffix = "假装你是上述音频中的人物,与我进行对话。"
            else:
                vc_prompt_prefix = "Clone the voice in the provided audio prompt."
                vc_prompt_suffix = "Try to role-play the character based on the audio prompt above."

            if ref_audio is not None:
                sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}
            else:
                print("Warning: ref_audio is None, speech generation will be performed based on the default voice.")
                sys_msgs = {"role": "user", "content": ["Use the <reserved_53> voice.", vc_prompt_suffix]}

            return sys_msgs
        elif mode == "voice_cloning":
            if language == "zh":
                vc_prompt_prefix = "模仿输入音频中的声音特征。"
            else:
                vc_prompt_prefix = "Clone the voice in the provided audio prompt."

            if ref_audio is not None:
                sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio]}
            else:
                raise ValueError("ref_audio con't be None in voice_cloning mode.")

            return sys_msgs
        else:
            sys_prompt = "You are a helpful assistant. You can accept audio and text input and output voice and text."
            sys_msgs = {"role": "user", "content": [sys_prompt]}

            return sys_msgs

    def generate(
        self,
        input_ids=None,
        pixel_values=None,
        tgt_sizes=None,
        audio_features=[],
        audio_feature_lens=None,
        image_bound=None,
        audio_bounds=None,
        spk_bounds=None,
        attention_mask=None,
        tokenizer=None,
        vision_hidden_states=None,
        stream=False,
        decode_text=True,
        **kwargs,
    ):
        assert input_ids is not None
        assert len(input_ids) == len(pixel_values)

        model_inputs = {
            "input_ids": input_ids,
            "audio_features": audio_features,
            "audio_feature_lens": audio_feature_lens,
            "image_bound": image_bound,
            "audio_bounds": audio_bounds,
            "spk_bounds": spk_bounds,
        }

        if vision_hidden_states is None:
            model_inputs["pixel_values"] = pixel_values
            model_inputs["tgt_sizes"] = tgt_sizes
        else:
            model_inputs["vision_hidden_states"] = vision_hidden_states

        model_output = {}
        with torch.inference_mode():
            model_inputs["inputs_embeds"], vision_hidden_states = self.get_vllm_embedding(model_inputs)
            model_inputs["inputs_embeds"] = self.get_omni_embedding(
                model_inputs,
                input_embeddings=model_inputs["inputs_embeds"],
                chunk_length=self.config.audio_chunk_length,
            )

            if stream:
                result = self._decode_stream(model_inputs["inputs_embeds"], tokenizer, **kwargs)
                # if stream return TextIteratorStreamer and output is empty
                outputs = {}
            else:
                outputs = self._decode(model_inputs["inputs_embeds"], tokenizer, attention_mask, **kwargs) #怎么每次要调用config

                result = self._decode_text(outputs.sequences, tokenizer)
                
        if decode_text is False:
            return outputs
        
        
        return result, outputs

    def chat(
        self,
        image=None,
        msgs=None,
        tokenizer=None,
        processor=None,
        vision_hidden_states=None,
        max_new_tokens=2048,
        min_new_tokens=0,
        sampling=True,
        max_inp_length=32768,
        stream=False,
        chunk_input=True,
        omni_input=False,
        max_slice_nums=None,
        use_image_id=None,
        use_tts_template=False,
        generate_audio=False,
        return_spk_embed=False,
        return_dict=False,
        output_audio_path=None,
        **kwargs,
    ):
        """
        Unified chat function

        Args:
            image: use for batch_size=1 vqa, It is not recommended to continue to use this parameter
            msgs: the input chat msgs, support text: (string)  / image: (PIL.Image) / audio (numpy.ndarray)
            tokenizer: tokenizer for llm
            processor: if None, use the default processor
            max_new_tokens: the maximum length of the generation
            min_new_tokens: the minimum length of the generation
            sampling: whether to use sampling decoding or beam search decoding
            max_inp_length: the maximum length of input
            stream: whether to return generator, only used when tts is not required
            chunk_input: whether to split audio into 1s chunks
            omni_input: determine whether it is omni mode
            max_slice_nums: control the maximum number of image slices
            use_image_id: for video understanding or omni understanding, use_image_id should be False
            use_tts_template: if the msgs contain audio, use_tts_template should be True
            generate_audio: whether to generate audio output, only used when return_dict=True
            return_spk_embed: whether to return spk embedding, only used when return_dict=True
            return_dict: whether to return dict
            output_audio_path: audio save path when generate_audio
            **kwargs:
        """
        if isinstance(msgs[0], list):
            batched = True
        else:
            batched = False

        if generate_audio or return_spk_embed:
            return_dict = True

        msgs_list = msgs
        images_list = image

        if batched is False:
            images_list, msgs_list = [images_list], [msgs_list]
        else:
            assert images_list is None, "Please integrate image to msgs when using batch inference."
            images_list = [None] * len(msgs_list)
        assert len(images_list) == len(msgs_list), "The batch dim of images_list and msgs_list should be the same."

        if processor is None:
            if self.processor is None:
                self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
            processor = self.processor
        assert (
            self.config.query_num == processor.image_processor.image_feature_size
        ), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
        assert (
            self.config.patch_size == processor.image_processor.patch_size
        ), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
        assert (
            self.config.use_image_id == processor.image_processor.use_image_id
        ), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
        assert (
            self.config.slice_config.max_slice_nums == processor.image_processor.max_slice_nums
        ), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
        assert (
            self.config.slice_mode == processor.image_processor.slice_mode
        ), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."

        prompts_lists = []
        input_images_list = []
        input_audios_list = []
        audio_parts_list = []

        for image, msgs in zip(images_list, msgs_list):
            if isinstance(msgs, str):
                msgs = json.loads(msgs)
            copy_msgs = deepcopy(msgs)

            assert len(msgs) > 0, "msgs is empty"
            assert sampling or not stream, "if use stream mode, make sure sampling=True"

            if image is not None and isinstance(copy_msgs[0]["content"], str):
                copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]]

            images = []
            audios = []
            audio_parts = []
            for i, msg in enumerate(copy_msgs):
                role = msg["role"]
                content = msg["content"]
                assert role in ["system", "user", "assistant"]
                if i == 0:
                    assert role in ["user", "system"], "The role of first msg should be user"
                if isinstance(content, str):
                    content = [content]
                cur_msgs = []
                for c in content:
                    if isinstance(c, Image.Image):
                        images.append(c)
                        cur_msgs.append("(<image>./</image>)")
                    elif isinstance(c, np.ndarray):  # audio
                        audios.append(c)
                        audio_parts.append(i)
                        cur_msgs.append("(<audio>./</audio>)")
                        use_tts_template = True
                    elif isinstance(c, str):
                        cur_msgs.append(c)
                if omni_input:
                    msg["content"] = "".join(cur_msgs)
                else:
                    msg["content"] = "\n".join(cur_msgs)

            prompts_lists.append(
                processor.tokenizer.apply_chat_template(
                    copy_msgs,
                    tokenize=False,
                    add_generation_prompt=True,
                    chat_template=self.default_tts_chat_template if use_tts_template else None,
                )
            )
            input_images_list.append(images)
            input_audios_list.append(audios)
            audio_parts_list.append(audio_parts)

        inputs = processor(
            prompts_lists,
            input_images_list,
            input_audios_list,
            audio_parts_list,
            max_slice_nums=max_slice_nums,
            use_image_id=use_image_id,
            chunk_input=chunk_input,
            return_tensors="pt",
            max_length=max_inp_length,
        ).to(self.device)

        if sampling:
            generation_config = {
                "top_p": 0.8,
                "top_k": 100,
                "temperature": 0.7,
                "do_sample": True,
                "repetition_penalty": 1.05,
            }
        else:
            generation_config = {
                "num_beams": 3,
                "repetition_penalty": 1.2,
            }

        if min_new_tokens > 0:
            generation_config["min_new_tokens"] = min_new_tokens

        generation_config.update((k, kwargs[k]) for k in generation_config.keys() & kwargs.keys())

        inputs.pop("image_sizes")
        with torch.inference_mode():
            res, outputs = self.generate(
                **inputs,
                tokenizer=tokenizer,
                max_new_tokens=max_new_tokens,
                vision_hidden_states=vision_hidden_states,
                stream=stream,
                **generation_config,
            )

        if stream:

            def stream_gen():
                for text in res:
                    for term in self.terminators:
                        text = text.replace(term, "")
                    yield text

            if return_dict:
                return OmniOutput(text=stream_gen())
            else:
                return stream_gen()

        else:
            spk_embeds = wav_numpy = sr = None

            if batched:
                answer = res
            else:
                answer = res[0]

                if use_tts_template and generate_audio:
                    mel_spec = self._generate_mel_spec(inputs, outputs, answer)
                    wav_numpy, sr = self.decode_mel_to_audio(mel_spec, output_audio_path)

            if return_spk_embed:
                spk_embeds = self._get_last_spk_embeds(inputs, outputs)

            if isinstance(answer, list):
                answer = [i.replace(tokenizer.tts_end, "") for i in answer]
            else:
                answer = answer.replace(tokenizer.tts_end, "")

            if return_dict:
                return OmniOutput(text=answer, spk_embeds=spk_embeds, audio_wav=wav_numpy, sampling_rate=sr)
            else:
                return answer

    def _decode_hidden(self, result_ids, last_hidden_states, tokenizer):
        terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators] #self.terminators=['<|im_end|>', '<|endoftext|>']
        hidden_states = torch.concat([h[:,-1:] for h in last_hidden_states],dim=1)
        hidden_states_unpad = []
        result_text_unpad = []
        text_token_len = []
        for id, result in enumerate(result_ids):
            hidden_states_i = hidden_states[id, result != 0, :]
            result = result[result!=0]
            if result[0] == tokenizer.bos_id:
                result = result[1:]
                hidden_states_i = hidden_states_i[1:]
            if result[-1] in terminators:
                result = result[:-1]
                hidden_states_i = hidden_states_i[:-1]
            if result[-1] == 151692:
                #'<|tts_eos|>'
                result = result[:-1]
                hidden_states_i = hidden_states_i[:-1]
            result_text_unpad.append(tokenizer.decode(result))
            hidden_states_unpad.append(hidden_states_i)
            text_token_len.append(len(result))
        return text_token_len, hidden_states, hidden_states_unpad, result_text_unpad
    
    def get_hidden(
        self,
        image=None,
        msgs=None,
        tokenizer=None,
        processor=None,
        vision_hidden_states=None,
        max_new_tokens=2048,
        min_new_tokens=0,
        sampling=True,
        max_inp_length=32768,
        stream=False,
        chunk_input=True,
        omni_input=False,
        max_slice_nums=None,
        use_image_id=None,
        use_tts_template=False,
        generate_audio=False,
        return_spk_embed=False,
        **kwargs,
    ):
        if isinstance(msgs[0], list):
            batched = True
        else:
            batched = False

        if generate_audio or return_spk_embed:
            return_dict = True

        msgs_list = msgs
        images_list = image

        if batched is False:
            images_list, msgs_list = [images_list], [msgs_list]
        else:
            assert images_list is None, "Please integrate image to msgs when using batch inference."
            images_list = [None] * len(msgs_list)
        assert len(images_list) == len(msgs_list), "The batch dim of images_list and msgs_list should be the same."

        if processor is None:
            if self.processor is None:
                self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
            processor = self.processor

        assert (
            self.config.query_num == processor.image_processor.image_feature_size
        ), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
        assert (
            self.config.patch_size == processor.image_processor.patch_size
        ), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
        assert (
            self.config.use_image_id == processor.image_processor.use_image_id
        ), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
        assert (
            self.config.slice_config.max_slice_nums == processor.image_processor.max_slice_nums
        ), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
        assert (
            self.config.slice_mode == processor.image_processor.slice_mode
        ), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."

        prompts_lists = []
        input_images_list = []
        input_audios_list = []
        audio_parts_list = []
        for image, msgs in zip(images_list, msgs_list):
            if isinstance(msgs, str):
                msgs = json.loads(msgs)
            copy_msgs = deepcopy(msgs)

            assert len(msgs) > 0, "msgs is empty"
            assert sampling or not stream, "if use stream mode, make sure sampling=True"

            # if image is not None and isinstance(copy_msgs[0]["content"], str):
            #     copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]]

            images = []
            audios = []
            audio_parts = []
            for i, msg in enumerate(copy_msgs):
                role = msg["role"]
                content = msg["content"]
                assert role in ["system", "user", "assistant"]
                if i == 0:
                    assert role in ["user", "system"], "The role of first msg should be user"
                if isinstance(content, str):
                    content = [content]
                cur_msgs = []
                for c in content:
                    if isinstance(c, Image.Image):
                        images.append(c)
                        cur_msgs.append("(<image>./</image>)")
                    elif isinstance(c, np.ndarray):  # audio
                        audios.append(c)
                        audio_parts.append(i)
                        cur_msgs.append("(<audio>./</audio>)")
                        use_tts_template = True
                    elif isinstance(c, str):
                        cur_msgs.append(c)
                if omni_input:
                    msg["content"] = "".join(cur_msgs)
                else:
                    msg["content"] = "\n".join(cur_msgs)

            prompts_lists.append(
                processor.tokenizer.apply_chat_template(
                    copy_msgs,
                    tokenize=False,
                    add_generation_prompt=True,
                    chat_template=self.default_tts_chat_template if use_tts_template else None,
                )
            )
            input_images_list.append(images)
            input_audios_list.append(audios)
            audio_parts_list.append(audio_parts)

        inputs = processor(
            prompts_lists,
            input_images_list,
            input_audios_list,
            audio_parts_list,
            max_slice_nums=max_slice_nums,
            use_image_id=use_image_id,
            chunk_input=chunk_input,
            return_tensors="pt",
            max_length=max_inp_length,
        ).to(self.device)

        if sampling:
            generation_config = {
                "top_p": 0.8,
                "top_k": 100,
                "temperature": 0.7,
                "do_sample": True,
                "repetition_penalty": 1.05,
            }
        else:
            generation_config = {
                "num_beams": 3,
                "repetition_penalty": 1.2,
            }

        if min_new_tokens > 0:
            generation_config["min_new_tokens"] = min_new_tokens

        generation_config.update((k, kwargs[k]) for k in generation_config.keys() & kwargs.keys())

        inputs.pop("image_sizes")
        # with torch.inference_mode():
        with torch.no_grad():
            res, outputs = self.generate(
                **inputs,
                tokenizer=tokenizer,
                max_new_tokens=max_new_tokens,
                vision_hidden_states=vision_hidden_states,
                stream=stream,
                **generation_config,
            )

        last_hidden_states = [hs[-1] for hs in outputs.hidden_states]
        text_token = deepcopy(outputs.sequences)
        text_token_len, hidden_states, hidden_states_unpad, text_unpad = self._decode_hidden(text_token, last_hidden_states, tokenizer)
        for id in range(len(text_token)):
            len_ = text_token_len[id]
            text_token[id, len_:] = 0
            hidden_states[id, len_:] = 0
        max_len = max(text_token_len)
        text_token = text_token[:, :max_len]
        hidden_states = hidden_states[:, :max_len]

        return text_unpad, text_token, torch.Tensor(text_token_len).to(torch.int32), hidden_states

    def get_hidden_forward(self,data,**kwargs,):
        
        vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)

        if self.config.init_audio:
            vllm_embedding = self.get_omni_embedding(
                data, input_embeddings=vllm_embedding, chunk_length=self.config.audio_chunk_length
            )

        position_ids = data["position_ids"]
        if position_ids.dtype != torch.int64:
            position_ids = position_ids.long()

        # compatible with llama factory
        for key in ["input_ids", "inputs_embeds", "position_ids"]:
            if key in kwargs:
                del kwargs[key]

        outputs = self.llm(input_ids=None, position_ids=position_ids, inputs_embeds=vllm_embedding, output_hidden_states=True, **kwargs)
        
        ##计算损失
        loss_fct = nn.CrossEntropyLoss()
        logits = outputs.logits.view(-1,self.config.vocab_size).contiguous()
        labels = data['target'].view(-1).long().contiguous()
        # Enable model parallelism
        labels = labels.to(logits.device)
        loss = loss_fct(logits, labels)

        ##得到隐藏层特征(根据对话拆分多轮)
        last_hidden_states = outputs.hidden_states[-1] #(batch_size, s, 3584)
        batch_size = last_hidden_states.shape[0]
        new_hidden_states = []
        text_token = []
        text_token_len = []
        for batch_id in range(batch_size):
            st_id = -1
            end_id = -1
            for id in range(len(data['target'][batch_id])):
                if data['target'][batch_id][id] != -100 and data['target'][batch_id][id] != 151645 and st_id==-1:
                    st_id = id+1 #+1是因为target[0]='\n',要去掉
                if data['target'][batch_id][id] == 151645 and st_id!=-1: #tokenizer.eos_id
                    end_id = id
                    new_hidden_states.append(last_hidden_states[batch_id:batch_id+1,st_id:end_id])
                    text_token.append(data['target'][batch_id:batch_id+1,st_id:end_id])
                    text_token_len.append(end_id-st_id)
                    
                    st_id = -1
                    
        ##根据filter过滤不满足要求的answer
        # assert sum([len(filter_i) for filter_i in data['filter']]) == len(text_token), f"filter data error! filter:{data['filter']}, {data['target']},{len(text_token)}"
        filter_bool = [filter_i for batch_filter_i in data['filter'] for filter_i in batch_filter_i]
        
        if sum(filter_bool) == 0:
            #没有满足条件的文本可用于训练tts
            return None, None, None,loss
        new_hidden_states = [new_hidden_states[i] for i in range(len(filter_bool)) if filter_bool[i]]
        text_token = [text_token[i] for i in range(len(filter_bool)) if filter_bool[i]]
        text_token_len = [text_token_len[i] for i in range(len(filter_bool)) if filter_bool[i]]
        
        max_len = np.max(text_token_len)
        ##padding
        for id, new_hidden_state in enumerate(new_hidden_states):
            # new_hidden_state (1,s,3584)
            pad_num = max_len-new_hidden_state.shape[1]
            if pad_num==0:
                continue
            
            new_hidden_states[id] = torch.cat( 
                    [
                        new_hidden_state,
                        torch.zeros((1, pad_num, new_hidden_state.shape[-1]), device=new_hidden_state.device),
                    ],
                    dim=1,
                ) #(1,max_len,3584)
            text_token[id] = torch.cat([text_token[id],torch.zeros((1, pad_num), dtype=text_token[id].dtype, device=text_token[id].device)],dim=1,) #(1,max_len)
        new_hidden_states =  torch.cat(new_hidden_states, dim=0) #(batch_size,max_len,3584)
        text_token =  torch.cat(text_token, dim=0) #(batch_size,max_len)
        text_token_len = torch.tensor(text_token_len, dtype=torch.int32, device=text_token.device)
        ##################debug############################
        # from transformers import AutoTokenizer
        # tokenizer_path = '/mnt/afs/zhoufangru/agent/end2end/pretrained_models/MiniCPM-o-2_6'
        # tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True)
        # output_ids = torch.argmax(outputs.logits, dim=-1)
        # batch_id = 0
        # tokenizer.decode(output_ids[batch_id][data['target'][batch_id]!=-100])[1:]
        ##################debug############################
        return text_token, text_token_len, new_hidden_states,loss

    @torch.inference_mode()
    def streaming_prefill(
        self,
        session_id,
        msgs,
        tokenizer,
        omni_input=True,
        max_slice_nums=None,
        ls_temperature=1.0,
        **kwargs,
    ):
        """
        Streaming video/audio input and output audio stream, Only support batch_size=1
        Args:
            session_id: Note: new connection should use a new session_id
        """
        assert session_id is not None
        if self.session_id is None or session_id != self.session_id:  # new session
            self.is_first = True
        else:
            self.is_first = False

        images = []
        audios = []

        assert len(msgs) == 1
        copy_msgs = deepcopy(msgs)
        msg = copy_msgs[0]

        assert msg["role"] in ["system", "user", "assistant"]

        content = msg["content"]
        cur_msgs = []
        for j, c in enumerate(content):
            if isinstance(c, Image.Image):
                images.append(c)
                cur_msgs.append("(<image>./</image>)")
            elif isinstance(c, np.ndarray):  # audio
                audios.append(c)
                cur_msgs.append("(<audio>./</audio>)")
            elif isinstance(c, str):
                cur_msgs.append(c)
            else:
                logger.error("Invalid content type:", c)

        cur_contents = "".join(cur_msgs) if omni_input else "\n".join(cur_msgs)
        if not self.is_first and self.new_user_msg and msg["role"] == "user":  # new user add im_start
            if self.llm_generated:
                if self.llm_generate_completed:
                    msg["content"] = "<|im_end|>\n<|im_start|>user\n" + cur_contents
                else:  # break llm gen, add tts_eos
                    msg["content"] = "<|tts_eos|><|im_end|>\n<|im_start|>user\n" + cur_contents
            else:
                msg["content"] = "<|im_start|>user\n" + cur_contents
            self.new_user_msg = False
        else:
            msg["content"] = cur_contents

        if msg["role"] in ["system", "assistant"]:
            self.new_user_msg = True
            self.audio_past_key_values = None  # apm kv cache

        if self.is_first:
            # init pask_key_values
            logger.info(f"new session_id: {session_id}, reset kv cache")
            self.reset_session()
            self.session_id = session_id

            prompt = tokenizer.apply_chat_template(
                copy_msgs, tokenize=False, add_generation_prompt=False, chat_template=self.default_tts_chat_template
            )
            add_special_tokens = True  # add bos
        else:
            prompt = copy_msgs[0]["content"]
            add_special_tokens = False

        model_inputs = self.processor(
            [prompt],
            [images],
            [audios],
            max_slice_nums=1 if max_slice_nums is None else max_slice_nums,
            use_image_id=False,
            chunk_input=True,
            return_tensors="pt",
            max_length=None,
            sampling_rate=16000,
            add_special_tokens=add_special_tokens,
        ).to(self.device)

        # 1. prepare input embeddings
        model_inputs["inputs_embeds"], _ = self.get_vllm_embedding(model_inputs)
        # get audio embedding with audio_past_key_values
        inputs_embeds = self.get_omni_embedding(
            model_inputs, input_embeddings=model_inputs["inputs_embeds"], stream_input=True
        )

        if self.is_first:
            # clean audio_past_key_values after first prefill
            self.audio_past_key_values = None

        if self.llm_past_key_values is not None:
            cache_length = self.llm_past_key_values[0][0].shape[2]
        else:
            cache_length = 0

        attention_mask = torch.ones((1, cache_length + inputs_embeds.shape[1]), dtype=torch.bool, device=self.device)

        # 2. do prefill and predict listen/speak label
        outputs = self.llm(
            past_key_values=self.llm_past_key_values,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            position_ids=None,  # position_ids,
            use_cache=True,
            return_dict=True,
        )
        self.llm_past_key_values = outputs["past_key_values"]
        return

    @torch.inference_mode()
    def streaming_generate(
        self,
        session_id,
        tokenizer,
        max_new_tokens=512,
        min_new_tokens=0,
        sampling=True,
        enable_regenerate=False,
        **kwargs,
    ):
        """
        Streaming video/audio input and output audio stream
        Args:
        """
        if sampling:
            generation_config = {
                "top_p": 0.8,
                "top_k": 100,
                "temperature": 0.7,
                "do_sample": True,
                "repetition_penalty": 1.05,
            }
        else:
            generation_config = {
                "num_beams": 3,
                "repetition_penalty": 1.2,
            }
        generation_config["min_new_tokens"] = min_new_tokens
        generation_config.update((k, kwargs[k]) for k in generation_config.keys() & kwargs.keys())

        # do generate
        # reset buffer
        self.new_user_msg = True
        self.llm_generated = True
        self.llm_generate_completed = False
        self.audio_past_key_values = None  # apm kv cache

        terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
        generate_prompt = "<|im_end|>\n<|im_start|>assistant\n<|spk_bos|><|spk|><|spk_eos|><|tts_bos|>"
        input_ids = tokenizer(generate_prompt, return_tensors="pt", add_special_tokens=False)["input_ids"].cuda()

        spk_start_idx = torch.where(input_ids[0] == tokenizer.spk_start_id)[0]
        spk_end_idx = torch.where(input_ids[0] == tokenizer.spk_end_id)[0]
        spk_bounds = [
            torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)])
        ]  # List[Tensor], (1,2)

        cache_length = past_length = self.llm_past_key_values[0][0].shape[2]
        attention_mask = torch.ones((1, cache_length + input_ids.shape[1]), dtype=torch.bool, device=self.device)

        generation_config["max_new_tokens"] = max_new_tokens
        streamer = self.llm_generate_chunk(input_ids, attention_mask, tokenizer, terminators, generation_config)
        return streamer

    def llm_generate_chunk(self, input_ids, attention_mask, tokenizer, terminators, generation_config):
        def check_uncompleted_token(ids):
            cur_text = tokenizer.decode(ids)
            end = len(ids)
            while cur_text[-1] == "�":
                end -= 1
                if end == 0:
                    break
                cur_text = tokenizer.decode(ids[:end])
            return end

        max_new_tokens = int(generation_config.pop("max_new_tokens", 2048))
        new_len = 0
        eos = False
        left_ids = None

        while True:
            outputs = self.llm.generate(
                input_ids=input_ids,
                past_key_values=self.llm_past_key_values,
                attention_mask=attention_mask,
                use_cache=True,
                max_new_tokens=3,  # reduce first token delay
                pad_token_id=0,
                output_hidden_states=True,
                return_dict_in_generate=True,
                eos_token_id=terminators,
                **generation_config,
            )
            if outputs.sequences[0, -1] in terminators:
                eos = True
            input_len = input_ids.shape[1]
            cur_ids = outputs.sequences[:, input_len:] #(batch_size,max_new_tokens)
            cur_hidden_states = torch.concat([hidden_states[-1][:, -1:] for hidden_states in outputs.hidden_states],dim=1) #(batch_size, max_new_tokens, 3584)
            new_len += cur_ids.shape[1]

            if left_ids is not None and left_ids.shape[1] > 0:
                cur_ids = torch.cat([left_ids, cur_ids], dim=1)
            end = check_uncompleted_token(cur_ids[0])
            left_ids = cur_ids[:, end:]
            cur_ids = cur_ids[:, :end]
            if 151692 in cur_ids[0].cpu().tolist():
                #<|tts_eos|>
                end = cur_ids[0].cpu().tolist().index(151692)
                eos = True
                cur_ids = cur_ids[:, :end]
            cur_hidden_states = cur_hidden_states[:, :end]
            text = self._decode_text(cur_ids, tokenizer)[0] if end > 0 else ""
            self.llm_past_key_values = outputs.past_key_values
            input_ids = outputs.sequences[:, -1:]
            cache_length = past_length = self.llm_past_key_values[0][0].shape[2]
            attention_mask = torch.ones((1, cache_length + input_ids.shape[1]), dtype=torch.bool, device=self.device)

            res = {"text": text, "text_token":cur_ids, "hidden_states": cur_hidden_states}

            yield res

            if eos:
                self.llm_generate_completed = True
                break
            
            if new_len >= max_new_tokens:
                logger.debug(f"LLM generation {new_len} exceeds max_new_tokens({max_new_tokens}), break.")
                break



class MultiModalProjector(nn.Module):
    def __init__(self, in_dim, out_dim):
        super().__init__()
        self.linear1 = nn.Linear(in_features=in_dim, out_features=out_dim, bias=True)
        self.relu = nn.ReLU()
        self.linear2 = nn.Linear(in_features=out_dim, out_features=out_dim, bias=True)

    def forward(self, audio_features):
        hidden_states = self.relu(self.linear1(audio_features))
        hidden_states = self.linear2(hidden_states)
        return hidden_states

def prepare_inputs_for_generation(
    self,
    input_ids,
    past_key_values=None,
    attention_mask=None,
    inputs_embeds=None,
    cache_position=None,
    position_ids=None,
    use_cache=True,
    **kwargs,
):
    if past_key_values is not None:
        if isinstance(past_key_values, Cache):
            cache_length = past_key_values.get_seq_length()
            past_length = past_key_values.seen_tokens
        else:
            cache_length = past_length = past_key_values[0][0].shape[2]

        # Keep only the unprocessed tokens:
        # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
        # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
        # input)
        if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
            input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
        # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
        # input_ids based on the past_length.
        elif past_length < input_ids.shape[1]:
            input_ids = input_ids[:, past_length:]
        # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

    if attention_mask is not None and position_ids is None:
        # create position_ids on the fly for batch generation
        position_ids = attention_mask.long().cumsum(-1) - 1
        position_ids.masked_fill_(attention_mask == 0, 1)
        if past_key_values:
            position_ids = position_ids[:, -input_ids.shape[1] :]

            # This clo≠clo≠clone call is needed to avoid recapturing cuda graphs with →rch.comπ≤→rch.comπ≤torch.compile's  mode=reduce−overheadmode=reduce-overheadmode="reduce-overhead, as otherwise the input positionidspositionidsposition_ids would have various stride during the decoding. Here, simply using .contiguous().contiguous().contiguous() is not sufficient as in the batch size = 1 case, positionidspositionidsposition_ids is already contiguous but with varying stride which retriggers a capture.
            position_ids = position_ids.clone(memory_format=torch.contiguous_format)

    # if ∈putsembeds∈putsembedsinputs_embeds are passed, we only want to use them in the 1st generation step
    if inputs_embeds is not None and cache_position[0] == 0:
        model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
    else:
        # The clone here is for the same reason as for positionidspositionidsposition_ids.
        model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}

    if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
        if model_inputs["inputs_embeds"] is not None:
            batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
            device = model_inputs["inputs_embeds"].device
        else:
            batch_size, sequence_length = model_inputs["input_ids"].shape
            device = model_inputs["input_ids"].device

        dtype = self.lm_head.weight.dtype
        min_dtype = torch.finfo(dtype).min

        attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
            attention_mask,
            sequence_length=sequence_length,
            target_length=past_key_values.get_max_length(),
            dtype=dtype,
            device=device,
            min_dtype=min_dtype,
            cache_position=cache_position,
            batch_size=batch_size,
        )

    model_inputs.update(
        {
            "position_ids": position_ids,
            # "cache_position": cache_position,
            "past_key_values": past_key_values,
            "use_cache": use_cache,
            "attention_mask": attention_mask,
        }
    )
    return model_inputs


# Copied from transformers.models.whisper.modeling_whisper.WhisperEncoderLayer and add use_cache for streaming inference
class MiniCPMWhisperEncoderLayer(nn.Module):
    def __init__(self, config: WhisperConfig, layer_idx: int = None):
        super().__init__()
        self.embed_dim = config.d_model #1024
        self.self_attn = WHISPER_ATTENTION_CLASSES[config._attn_implementation](
            embed_dim=self.embed_dim,
            num_heads=config.encoder_attention_heads,
            dropout=config.attention_dropout,
            config=config,
            layer_idx=layer_idx,
        )
        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout
        self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
        self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        layer_head_mask: torch.Tensor,
        output_attentions: bool = False,
        past_key_values: Optional[EncoderDecoderCache] = None,
        use_cache: Optional[bool] = False,
    ) -> torch.Tensor:
        r"""
        Args:
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, embed_dim)`):
                Hidden states to be fed into the encoder layer.
            attention_mask (`torch.FloatTensor` of shape `(batch_size, 1, tgt_len, src_len)`):
                Attention mask where padding elements are indicated by large negative values.
            layer_head_mask (`torch.FloatTensor` of shape `(encoder_attention_heads,)`):
                Mask to nullify selected heads of the attention modules.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attention weights.
            past_key_values (`EncoderDecoderCache`, *optional*):
                Past key-value pairs used for incremental decoding.
            use_cache (`bool`, *optional*):
                Whether or not to return updated `past_key_values` for caching.

        Returns:
            A tuple of shape `(hidden_states, optional(attn_weights), optional(past_key_values))`.
        """
        residual = hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)
        hidden_states, attn_weights, past_key_values = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            output_attentions=output_attentions,
            past_key_value=past_key_values,
        )
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
        hidden_states = self.fc2(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states

        if hidden_states.dtype == torch.float16 and (
            torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
        ):
            clamp_value = torch.finfo(hidden_states.dtype).max - 1000
            hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        if use_cache:
            outputs += (past_key_values,)

        return outputs



# Copied from from transformers.models.whisper.modeling_whisper.WhisperEncoder and add use_cache for streaming inference
class MiniCPMWhisperEncoder(WhisperEncoder):

    def __init__(self, config: WhisperConfig):
        # print(config)
        super().__init__(config)
        self.layers = nn.ModuleList(
            [MiniCPMWhisperEncoderLayer(config, layer_idx=i) for i in range(config.encoder_layers)]
        )

    def forward(
        self,
        input_features,
        attention_mask=None,
        head_mask=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        past_key_values: Optional[EncoderDecoderCache] = None,
        use_cache: Optional[bool] = None,
    ):
        r"""
        Forward pass of the Whisper encoder.

        Args:
            input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`):
                Float values of log-mel features extracted from the raw audio waveform. Typically generated
                by a feature extractor (e.g., `WhisperFeatureExtractor`) that processes `.flac` or `.wav`
                files into padded 2D mel spectrogram frames. These features are projected via convolution layers
                (`conv1` and `conv2`) and then transformed into embeddings for the encoder.

            attention_mask (`torch.Tensor`, *optional*):
                Not used by Whisper for masking `input_features`, but included for API compatibility with
                other models. If provided, it is simply ignored within the model. By default, Whisper
                effectively ignores silence in the input log-mel spectrogram.

            head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
                Mask to nullify selected attention heads. The elements should be either 1 or 0, where:
                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked** (i.e., the attention head is dropped).

            output_attentions (`bool`, *optional*):
                Whether or not to return the attention tensors of all encoder layers. If set to `True`, the
                returned tuple (or `BaseModelOutputWithPast`) will contain an additional element with
                attention weights for each encoder layer.

            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. If set to `True`, the returned
                tuple (or `BaseModelOutputWithPast`) will contain a tuple of hidden states, including the
                initial embedding output as well as the outputs of each layer.

            return_dict (`bool`, *optional*):
                Whether or not to return a `BaseModelOutputWithPast` (a subclass of `ModelOutput`) instead
                of a plain tuple. If set to `True`, the output will be a `BaseModelOutputWithPast` object,
                otherwise it will be a tuple.

            past_key_values (`EncoderDecoderCache`, *optional*):
                When using caching for faster inference, this is an object that stores the key-value pairs
                for attention states. If provided, the model will append new states to the existing cache
                and return the updated cache. This speeds up sequential decoding or chunked inference.

                - If `past_key_values` is `None`, no past states are used or returned.
                - If `past_key_values` is not `None` and `use_cache=True`, the model will use the provided
                cache and return the updated cache (as `next_encoder_cache`).

            use_cache (`bool`, *optional*):
                Whether or not the model should use caching (`past_key_values`) to speed up processing
                during inference. When set to `True`, the model will:
                - Inspect and use `past_key_values` if provided.
                - Return updated `past_key_values` (under the name `next_encoder_cache` in
                    `BaseModelOutputWithPast`).

        Returns:
            `BaseModelOutputWithPast` or `tuple` (depending on `return_dict`):
                If `return_dict=True`, a `BaseModelOutputWithPast` is returned, which contains:
                - **last_hidden_state** (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
                The output of the final encoder layer.
                - **hidden_states** (`tuple(torch.FloatTensor)`, *optional*, returned if `output_hidden_states=True`):
                Hidden states of the model at each layer (including the initial projection).
                - **attentions** (`tuple(torch.FloatTensor)`, *optional*, returned if `output_attentions=True`):
                Attention weights from each encoder layer.
                - **past_key_values** (an object of type `EncoderDecoderCache` or `None`, *optional*):
                Updated cache of key-value pairs if `use_cache=True`.

                If `return_dict=False`, a tuple is returned, where the format is:
                `(last_hidden_state, hidden_states, attentions)`, with `hidden_states` and `attentions`
                only present if their respective `output_*` arguments are set to `True`.

        Example:
            >>> from transformers import AutoFeatureExtractor, WhisperConfig, WhisperForConditionalGeneration
            >>> import torch

            >>> # Load a feature extractor and a Whisper model
            >>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-tiny.en")
            >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")

            >>> # Assume you have audio (list of floats or numpy array) loaded from a file
            >>> # Then extract the mel features:
            >>> input_features = feature_extractor(audio, sampling_rate=16000, return_tensors="pt").input_features

            >>> # Forward pass
            >>> outputs = model.encoder(
            ...     input_features=input_features,
            ...     output_hidden_states=True,
            ...     output_attentions=True,
            ...     use_cache=True
            ... )

            >>> # Retrieve the last hidden state
            >>> last_hidden_state = outputs.last_hidden_state
            >>> print(last_hidden_state.shape)
            torch.Size([batch_size, seq_length, hidden_size])

            >>> # Retrieve the intermediate hidden states if output_hidden_states=True
            >>> all_encoder_hidden_states = outputs.hidden_states

            >>> # Retrieve attention weights if output_attentions=True
            >>> all_encoder_attentions = outputs.attentions

            >>> # Retrieve updated past key values if use_cache=True
            >>> encoder_cache = outputs.past_key_values
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # Ignore copy
        input_features = input_features.to(dtype=self.conv1.weight.dtype, device=self.conv1.weight.device)

        inputs_embeds = nn.functional.gelu(self.conv1(input_features))
        inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))

        inputs_embeds = inputs_embeds.permute(0, 2, 1)
        # import ipdb; ipdb.set_trace()
        embed_pos = self.embed_positions.weight

        if embed_pos.shape[0] == 0:
            #分布式训练
            params_to_gather = [param for param in self.embed_positions.parameters()]
            with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=0):
                embed_pos = deepcopy(self.embed_positions.weight)
                # import ipdb; ipdb.set_trace()
            
        past_key_values_length = 0
        if use_cache:
            if past_key_values is None:
                past_key_values = EncoderDecoderCache(DynamicCache(), DynamicCache())
            elif isinstance(past_key_values, list):
                past_key_values = EncoderDecoderCache(DynamicCache.from_legacy_cache(past_key_values), DynamicCache())
            elif isinstance(past_key_values, DynamicCache):
                past_key_values = EncoderDecoderCache(past_key_values, DynamicCache())
            else:
                pass
            past_key_values_length = past_key_values.self_attention_cache.get_usable_length(inputs_embeds.shape[1])
            if inputs_embeds.shape[1] + past_key_values_length > embed_pos.shape[0]:
                logger.warning("seems the audio is longer than 30s. repeating the last part of the audio")
                embed_pos_front = embed_pos[past_key_values_length:, :]
                embed_pos = torch.cat(
                    (
                        embed_pos_front,
                        torch.repeat_interleave(
                            embed_pos[-1, :].unsqueeze(0),
                            inputs_embeds.shape[1] - embed_pos.shape[0] + past_key_values_length,
                            dim=0,
                        ),
                    )
                )
            else:
                embed_pos = embed_pos[past_key_values_length : inputs_embeds.shape[1] + past_key_values_length, :]
        else:
            embed_pos = embed_pos[: inputs_embeds.shape[1], :]

        hidden_states = inputs_embeds + embed_pos
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        # check if head_mask has a correct number of layers specified if desired
        if head_mask is not None:
            assert head_mask.size()[0] == (
                len(self.layers)
            ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."

        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            to_drop = False
            if self.training:
                dropout_probability = torch.rand([])
                if dropout_probability < self.layerdrop:  # skip the layer
                    to_drop = True

            # Ignore copy
            if to_drop:
                layer_outputs = (None, None)
            else:
                if self.gradient_checkpointing and self.training:
                    layer_outputs = self._gradient_checkpointing_func(
                        encoder_layer.__call__,
                        hidden_states,
                        attention_mask,
                        (head_mask[idx] if head_mask is not None else None),
                        output_attentions,
                        past_key_values,
                        use_cache,
                    )
                else:
                    layer_outputs = encoder_layer(
                        hidden_states,
                        attention_mask,
                        layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                        output_attentions=output_attentions,
                        past_key_values=past_key_values,
                        use_cache=use_cache,
                    )

                hidden_states = layer_outputs[0]

            if use_cache:
                next_encoder_cache = layer_outputs[2 if output_attentions else 1]
            else:
                next_encoder_cache = None

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        hidden_states = self.layer_norm(hidden_states)
        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            hidden_states=encoder_states,
            attentions=all_attentions,
            past_key_values=next_encoder_cache,
        )