File size: 39,920 Bytes
393d3de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 |
# coding=utf-8
# Copyright 2022 The Reach ML Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Simple block environments for the XArm."""
import collections
import enum
import math
import time
from typing import Dict, List
import gym
from gym import spaces
from gym.envs import registration
from .utils import utils_pybullet
from .utils import xarm_sim_robot
from .utils.pose3d import Pose3d
from .utils.utils_pybullet import ObjState
from .utils.utils_pybullet import XarmState
import numpy as np
from scipy.spatial import transform
import pybullet
import pybullet_utils.bullet_client as bullet_client
import matplotlib.pyplot as plt
BLOCK_URDF_PATH = "third_party/py/envs/assets/block.urdf"
PLANE_URDF_PATH = "third_party/bullet/examples/pybullet/gym/pybullet_data/" "plane.urdf"
WORKSPACE_URDF_PATH = "third_party/py/envs/assets/workspace.urdf"
ZONE_URDF_PATH = "third_party/py/envs/assets/zone.urdf"
INSERT_URDF_PATH = "third_party/py/envs/assets/insert.urdf"
EFFECTOR_HEIGHT = 0.06
EFFECTOR_DOWN_ROTATION = transform.Rotation.from_rotvec([0, math.pi, 0])
WORKSPACE_BOUNDS = np.array(((0.15, -0.5), (0.7, 0.5)))
# Min/max bounds calculated from oracle data using:
# ibc/environments/board2d_dataset_statistics.ipynb
# to calculate [mean - 3 * std, mean + 3 * std] using the oracle data.
# pylint: disable=line-too-long
ACTION_MIN = np.array([-0.02547718, -0.02090043], np.float32)
ACTION_MAX = np.array([0.02869084, 0.04272365], np.float32)
EFFECTOR_TARGET_TRANSLATION_MIN = np.array(
[0.1774151772260666, -0.6287994794547558], np.float32
)
EFFECTOR_TARGET_TRANSLATION_MAX = np.array(
[0.5654461532831192, 0.5441607423126698], np.float32
)
EFFECTOR_TARGET_TO_BLOCK_TRANSLATION_MIN = np.array(
[-0.07369826920330524, -0.11395704373717308], np.float32
)
EFFECTOR_TARGET_TO_BLOCK_TRANSLATION_MAX = np.array(
[0.10131562314927578, 0.19391131028532982], np.float32
)
EFFECTOR_TARGET_TO_TARGET_TRANSLATION_MIN = np.array(
[-0.17813862301409245, -0.3309651017189026], np.float32
)
EFFECTOR_TARGET_TO_TARGET_TRANSLATION_MAX = np.array(
[0.23726161383092403, 0.8404090404510498], np.float32
)
BLOCK_ORIENTATION_COS_SIN_MIN = np.array(
[-2.0649861991405487, -0.6154364347457886], np.float32
)
BLOCK_ORIENTATION_COS_SIN_MAX = np.array(
[1.6590178310871124, 1.8811014890670776], np.float32
)
TARGET_ORIENTATION_COS_SIN_MIN = np.array(
[-1.0761439241468906, -0.8846937336493284], np.float32
)
TARGET_ORIENTATION_COS_SIN_MAX = np.array(
[-0.8344330154359341, 0.8786859593819827], np.float32
)
# Hardcoded Pose joints to make sure we don't have surprises from using the
# IK solver on reset. The joint poses correspond to the Pose with:
# rotation = rotation3.Rotation3.from_axis_angle([0, 1, 0], math.pi)
# translation = np.array([0.3, -0.4, 0.07])
INITIAL_JOINT_POSITIONS = np.array(
[
-0.9254632489674508,
0.6990770671568564,
-1.106629064060494,
0.0006653351931553931,
0.3987969742311386,
-4.063402065624296,
]
)
DEFAULT_CAMERA_POSE_VIEW0 = (1.0, 0, 0.75)
DEFAULT_CAMERA_POSE_VIEW1 = (0.35, 0.7, 0.75)
DEFAULT_CAMERA_ORIENTATION_VIEW0 = (np.pi / 4, np.pi, -np.pi / 2)
DEFAULT_CAMERA_ORIENTATION_VIEW1 = (np.pi / 4, np.pi, 0)
IMAGE_WIDTH = 224
IMAGE_HEIGHT = 224
CAMERA_INTRINSICS = (
0.803 * IMAGE_WIDTH, # fx
0,
IMAGE_WIDTH / 2.0, # cx
0,
0.803 * IMAGE_WIDTH, # fy
IMAGE_HEIGHT / 2.0, # cy
0,
0,
1,
)
# "Realistic" visuals.
X_MIN_REAL = 0.15
X_MAX_REAL = 0.6
Y_MIN_REAL = -0.3048
Y_MAX_REAL = 0.3048
WORKSPACE_BOUNDS_REAL = np.array(((X_MIN_REAL, Y_MIN_REAL), (X_MAX_REAL, Y_MAX_REAL)))
WORKSPACE_URDF_PATH_REAL = "third_party/py/ibc/environments/assets/workspace_real.urdf"
CAMERA_POSE_REAL = (0.75, 0, 0.5)
CAMERA_ORIENTATION_REAL = (np.pi / 5, np.pi, -np.pi / 2)
IMAGE_WIDTH_REAL = 320
IMAGE_HEIGHT_REAL = 180
CAMERA_INTRINSICS_REAL = (
0.803 * IMAGE_WIDTH_REAL, # fx
0,
IMAGE_WIDTH_REAL / 2.0, # cx
0,
0.803 * IMAGE_WIDTH_REAL, # fy
IMAGE_HEIGHT_REAL / 2.0, # cy
0,
0,
1,
)
# pylint: enable=line-too-long
def build_env_name(task, shared_memory, use_image_obs, use_normalized_env=False):
"""Construct the env name from parameters."""
if isinstance(task, str):
task = BlockTaskVariant[task]
env_name = "Block" + task.value
if use_image_obs:
env_name = env_name + "Rgb"
if use_normalized_env:
env_name = env_name + "Normalized"
if shared_memory:
env_name = "Shared" + env_name
env_name = env_name + "-v0"
return env_name
class BlockTaskVariant(enum.Enum):
REACH = "Reach"
REACH_NORMALIZED = "ReachNormalized"
PUSH = "Push"
PUSH_NORMALIZED = "PushNormalized"
INSERT = "Insert"
def sleep_spin(sleep_time_sec):
"""Spin wait sleep. Avoids time.sleep accuracy issues on Windows."""
if sleep_time_sec <= 0:
return
t0 = time.perf_counter()
while time.perf_counter() - t0 < sleep_time_sec:
pass
class BlockPush(gym.Env):
"""Simple XArm environment for block pushing."""
def __init__(
self,
control_frequency=10.0,
task=BlockTaskVariant.PUSH,
image_size=None,
shared_memory=False,
seed=None,
goal_dist_tolerance=0.01,
effector_height=None,
visuals_mode="default",
):
"""Creates an env instance.
Args:
control_frequency: Control frequency for the arm. Each env step will
advance the simulation by 1/control_frequency seconds.
task: enum for which task, see BlockTaskVariant enum.
image_size: Optional image size (height, width). If None, no image
observations will be used.
shared_memory: If True `pybullet.SHARED_MEMORY` is used to connect to
pybullet. Useful to debug.
seed: Optional seed for the environment.
goal_dist_tolerance: float, how far away from the goal to terminate.
effector_height: float, custom height for end effector.
visuals_mode: 'default' or 'real'.
"""
# pybullet.connect(pybullet.GUI)
# pybullet.resetDebugVisualizerCamera(
# cameraDistance=1.5,
# cameraYaw=0,
# cameraPitch=-40,
# cameraTargetPosition=[0.55, -0.35, 0.2],
# )
if visuals_mode != "default" and visuals_mode != "real":
raise ValueError("visuals_mode must be `real` or `default`.")
self._task = task
self._connection_mode = pybullet.DIRECT
if shared_memory:
self._connection_mode = pybullet.SHARED_MEMORY
self.goal_dist_tolerance = goal_dist_tolerance
self.effector_height = effector_height or EFFECTOR_HEIGHT
self._visuals_mode = visuals_mode
if visuals_mode == "default":
self._camera_poses = [DEFAULT_CAMERA_POSE_VIEW0, DEFAULT_CAMERA_POSE_VIEW1]
self._camera_orientations = [
DEFAULT_CAMERA_ORIENTATION_VIEW0,
DEFAULT_CAMERA_ORIENTATION_VIEW1,
]
self.workspace_bounds = WORKSPACE_BOUNDS
self._image_size = image_size
self._camera_instrinsics = CAMERA_INTRINSICS
self._workspace_urdf_path = WORKSPACE_URDF_PATH
else:
self._camera_poses = [CAMERA_POSE_REAL]
self._camera_orientations = [CAMERA_ORIENTATION_REAL]
self.workspace_bounds = WORKSPACE_BOUNDS_REAL
self._image_size = image_size
self._camera_instrinsics = CAMERA_INTRINSICS_REAL
self._workspace_urdf_path = WORKSPACE_URDF_PATH_REAL
self.action_space = spaces.Box(low=-0.1, high=0.1, shape=(2,)) # x, y
self.observation_space = self._create_observation_space(image_size)
self._rng = np.random.RandomState(seed=seed)
self._block_ids = None
self._previous_state = None
self._robot = None
self._workspace_uid = None
self._target_id = None
self._target_pose = None
self._target_effector_pose = None
self._pybullet_client = None
self.reach_target_translation = None
self._setup_pybullet_scene()
self._saved_state = None
assert isinstance(self._pybullet_client, bullet_client.BulletClient)
self._control_frequency = control_frequency
self._step_frequency = (
1 / self._pybullet_client.getPhysicsEngineParameters()["fixedTimeStep"]
)
self._last_loop_time = None
self._last_loop_frame_sleep_time = None
if self._step_frequency % self._control_frequency != 0:
raise ValueError(
"Control frequency should be a multiple of the "
"configured Bullet TimeStep."
)
self._sim_steps_per_step = int(self._step_frequency / self._control_frequency)
self.rendered_img = None
# Use saved_state and restore to make reset safe as no simulation state has
# been updated at this state, but the assets are now loaded.
self.save_state()
self.reset()
@property
def pybullet_client(self):
return self._pybullet_client
@property
def robot(self):
return self._robot
@property
def workspace_uid(self):
return self._workspace_uid
@property
def target_effector_pose(self):
return self._target_effector_pose
@property
def target_pose(self):
return self._target_pose
@property
def control_frequency(self):
return self._control_frequency
@property
def connection_mode(self):
return self._connection_mode
def save_state(self):
self._saved_state = self._pybullet_client.saveState()
def set_goal_dist_tolerance(self, val):
self.goal_dist_tolerance = val
def get_control_frequency(self):
return self._control_frequency
def compute_state(self):
return self._compute_state()
def get_goal_translation(self):
"""Return the translation component of the goal (2D)."""
if self._task == BlockTaskVariant.REACH:
return np.concatenate([self.reach_target_translation, [0]])
else:
return self._target_pose.translation if self._target_pose else None
def get_obj_ids(self):
return self._block_ids
def _setup_workspace_and_robot(self, end_effector="suction"):
self._pybullet_client.resetSimulation()
self._pybullet_client.configureDebugVisualizer(pybullet.COV_ENABLE_GUI, 0)
self._pybullet_client.setPhysicsEngineParameter(enableFileCaching=0)
self._pybullet_client.setGravity(0, 0, -9.8)
utils_pybullet.load_urdf(
self._pybullet_client, PLANE_URDF_PATH, basePosition=[0, 0, -0.001]
)
self._workspace_uid = utils_pybullet.load_urdf(
self._pybullet_client,
self._workspace_urdf_path,
basePosition=[0.35, 0, 0.0],
)
self._robot = xarm_sim_robot.XArmSimRobot(
self._pybullet_client,
initial_joint_positions=INITIAL_JOINT_POSITIONS,
end_effector=end_effector,
color="white" if self._visuals_mode == "real" else "default",
)
def _setup_pybullet_scene(self):
self._pybullet_client = bullet_client.BulletClient(self._connection_mode)
# Temporarily disable rendering to speed up loading URDFs.
pybullet.configureDebugVisualizer(pybullet.COV_ENABLE_RENDERING, 0)
self._setup_workspace_and_robot()
if self._task == BlockTaskVariant.INSERT:
target_urdf_path = INSERT_URDF_PATH
else:
target_urdf_path = ZONE_URDF_PATH
self._target_id = utils_pybullet.load_urdf(
self._pybullet_client, target_urdf_path, useFixedBase=True
)
self._block_ids = [
utils_pybullet.load_urdf(
self._pybullet_client, BLOCK_URDF_PATH, useFixedBase=False
)
]
# Re-enable rendering.
pybullet.configureDebugVisualizer(pybullet.COV_ENABLE_RENDERING, 1)
self.step_simulation_to_stabilize()
def step_simulation_to_stabilize(self, nsteps=100):
for _ in range(nsteps):
self._pybullet_client.stepSimulation()
def seed(self, seed=None):
self._rng = np.random.RandomState(seed=seed)
def _set_robot_target_effector_pose(self, pose):
self._target_effector_pose = pose
self._robot.set_target_effector_pose(pose)
def reset(self, reset_poses=True):
workspace_center_x = 0.4
if reset_poses:
self._pybullet_client.restoreState(self._saved_state)
rotation = transform.Rotation.from_rotvec([0, math.pi, 0])
translation = np.array([0.3, -0.4, self.effector_height])
starting_pose = Pose3d(rotation=rotation, translation=translation)
self._set_robot_target_effector_pose(starting_pose)
# Reset block pose.
block_x = workspace_center_x + self._rng.uniform(low=-0.1, high=0.1)
block_y = -0.2 + self._rng.uniform(low=-0.15, high=0.15)
block_translation = np.array([block_x, block_y, 0])
block_sampled_angle = self._rng.uniform(math.pi)
block_rotation = transform.Rotation.from_rotvec([0, 0, block_sampled_angle])
self._pybullet_client.resetBasePositionAndOrientation(
self._block_ids[0],
block_translation.tolist(),
block_rotation.as_quat().tolist(),
)
# Reset target pose.
target_x = workspace_center_x + self._rng.uniform(low=-0.10, high=0.10)
target_y = 0.2 + self._rng.uniform(low=-0.15, high=0.15)
target_translation = np.array([target_x, target_y, 0.020])
target_sampled_angle = math.pi + self._rng.uniform(
low=-math.pi / 6, high=math.pi / 6
)
target_rotation = transform.Rotation.from_rotvec(
[0, 0, target_sampled_angle]
)
self._pybullet_client.resetBasePositionAndOrientation(
self._target_id,
target_translation.tolist(),
target_rotation.as_quat().tolist(),
)
else:
(
target_translation,
target_orientation_quat,
) = self._pybullet_client.getBasePositionAndOrientation(self._target_id)
target_rotation = transform.Rotation.from_quat(target_orientation_quat)
target_translation = np.array(target_translation)
self._target_pose = Pose3d(
rotation=target_rotation, translation=target_translation
)
if reset_poses:
self.step_simulation_to_stabilize()
state = self._compute_state()
self._previous_state = state
if self._task == BlockTaskVariant.REACH:
self._compute_reach_target(state)
self._init_goal_distance = self._compute_goal_distance(state)
init_goal_eps = 1e-7
assert self._init_goal_distance > init_goal_eps
self.best_fraction_reduced_goal_dist = 0.0
return state
def _compute_goal_distance(self, state):
goal_translation = self.get_goal_translation()
if self._task != BlockTaskVariant.REACH:
goal_distance = np.linalg.norm(
state["block_translation"] - goal_translation[0:2]
)
else:
goal_distance = np.linalg.norm(
state["effector_translation"] - goal_translation[0:2]
)
return goal_distance
def _compute_reach_target(self, state):
xy_block = state["block_translation"]
xy_target = state["target_translation"]
xy_block_to_target = xy_target - xy_block
xy_dir_block_to_target = (xy_block_to_target) / np.linalg.norm(
xy_block_to_target
)
self.reach_target_translation = xy_block + -1 * xy_dir_block_to_target * 0.05
def _compute_state(self):
effector_pose = self._robot.forward_kinematics()
block_position_and_orientation = (
self._pybullet_client.getBasePositionAndOrientation(self._block_ids[0])
)
block_pose = Pose3d(
rotation=transform.Rotation.from_quat(block_position_and_orientation[1]),
translation=block_position_and_orientation[0],
)
def _yaw_from_pose(pose):
return np.array([pose.rotation.as_euler("xyz", degrees=False)[-1]])
obs = collections.OrderedDict(
block_translation=block_pose.translation[0:2],
block_orientation=_yaw_from_pose(block_pose),
effector_translation=effector_pose.translation[0:2],
effector_target_translation=self._target_effector_pose.translation[0:2],
target_translation=self._target_pose.translation[0:2],
target_orientation=_yaw_from_pose(self._target_pose),
)
if self._image_size is not None:
obs["rgb"] = self._render_camera(self._image_size)
return obs
def _step_robot_and_sim(self, action):
"""Steps the robot and pybullet sim."""
# Compute target_effector_pose by shifting the effector's pose by the
# action.
target_effector_translation = np.array(
self._target_effector_pose.translation
) + np.array([action[0], action[1], 0])
target_effector_translation[0:2] = np.clip(
target_effector_translation[0:2],
self.workspace_bounds[0],
self.workspace_bounds[1],
)
target_effector_translation[-1] = self.effector_height
target_effector_pose = Pose3d(
rotation=EFFECTOR_DOWN_ROTATION, translation=target_effector_translation
)
self._set_robot_target_effector_pose(target_effector_pose)
# Update sleep time dynamically to stay near real-time.
frame_sleep_time = 0
if self._connection_mode == pybullet.SHARED_MEMORY:
cur_time = time.time()
if self._last_loop_time is not None:
# Calculate the total, non-sleeping time from the previous frame, this
# includes the actual step as well as any compute that happens in the
# caller thread (model inference, etc).
compute_time = (
cur_time
- self._last_loop_time
- self._last_loop_frame_sleep_time * self._sim_steps_per_step
)
# Use this to calculate the current frame's total sleep time to ensure
# that env.step runs at policy rate. This is an estimate since the
# previous frame's compute time may not match the current frame.
total_sleep_time = max((1 / self._control_frequency) - compute_time, 0)
# Now spread this out over the inner sim steps. This doesn't change
# control in any way, but makes the animation appear smooth.
frame_sleep_time = total_sleep_time / self._sim_steps_per_step
else:
# No estimate of the previous frame's compute, assume it is zero.
frame_sleep_time = 1 / self._step_frequency
# Cache end of this loop time, to compute sleep time on next iteration.
self._last_loop_time = cur_time
self._last_loop_frame_sleep_time = frame_sleep_time
for _ in range(self._sim_steps_per_step):
if self._connection_mode == pybullet.SHARED_MEMORY:
sleep_spin(frame_sleep_time)
self._pybullet_client.stepSimulation()
def step(self, action):
self._step_robot_and_sim(action)
state = self._compute_state()
goal_distance = self._compute_goal_distance(state)
fraction_reduced_goal_distance = 1.0 - (
goal_distance / self._init_goal_distance
)
if fraction_reduced_goal_distance > self.best_fraction_reduced_goal_dist:
self.best_fraction_reduced_goal_dist = fraction_reduced_goal_distance
done = False
reward = self.best_fraction_reduced_goal_dist
# Terminate the episode if the block is close enough to the target.
if goal_distance < self.goal_dist_tolerance:
reward = 1.0
done = True
return state, reward, done, {}
@property
def succeeded(self):
state = self._compute_state()
goal_distance = self._compute_goal_distance(state)
if goal_distance < self.goal_dist_tolerance:
return True
return False
@property
def goal_distance(self):
state = self._compute_state()
return self._compute_goal_distance(state)
def render(self, mode="rgb_array"):
if self._image_size is not None:
image_size = self._image_size
else:
# This allows rendering even for state-only obs,
# for visualization.
image_size = (IMAGE_HEIGHT, IMAGE_WIDTH)
view0 = self._render_camera(image_size=image_size, view=0)
view1 = self._render_camera(image_size=image_size, view=1)
data = np.concatenate([view0, view1], axis=1)
if mode == "human":
if self.rendered_img is None:
self.rendered_img = plt.imshow(
np.zeros((image_size[0], image_size[1], 4))
)
else:
self.rendered_img.set_data(data)
plt.draw()
plt.pause(0.00001)
return data
def close(self):
self._pybullet_client.disconnect()
def calc_camera_params(self, image_size, view):
# Mimic RealSense D415 camera parameters.
intrinsics = self._camera_instrinsics
# Set default camera poses.
front_position = self._camera_poses[view]
front_rotation = self._camera_orientations[view]
front_rotation = self._pybullet_client.getQuaternionFromEuler(front_rotation)
# Default camera configs.
zrange = (0.01, 10.0)
# OpenGL camera settings.
lookdir = np.float32([0, 0, 1]).reshape(3, 1)
updir = np.float32([0, -1, 0]).reshape(3, 1)
rotation = self._pybullet_client.getMatrixFromQuaternion(front_rotation)
rotm = np.float32(rotation).reshape(3, 3)
lookdir = (rotm @ lookdir).reshape(-1)
updir = (rotm @ updir).reshape(-1)
lookat = front_position + lookdir
focal_len = intrinsics[0]
znear, zfar = zrange
viewm = self._pybullet_client.computeViewMatrix(front_position, lookat, updir)
fovh = (image_size[0] / 2) / focal_len
fovh = 180 * np.arctan(fovh) * 2 / np.pi
# Notes: 1) FOV is vertical FOV 2) aspect must be float
aspect_ratio = image_size[1] / image_size[0]
projm = self._pybullet_client.computeProjectionMatrixFOV(
fovh, aspect_ratio, znear, zfar
)
return viewm, projm, front_position, lookat, updir
def _render_camera(self, image_size, view):
"""Render RGB image with RealSense configuration."""
viewm, projm, _, _, _ = self.calc_camera_params(image_size, view)
# Render with OpenGL camera settings.
_, _, color, _, _ = self._pybullet_client.getCameraImage(
width=image_size[1],
height=image_size[0],
viewMatrix=viewm,
projectionMatrix=projm,
flags=pybullet.ER_SEGMENTATION_MASK_OBJECT_AND_LINKINDEX,
renderer=pybullet.ER_BULLET_HARDWARE_OPENGL,
)
# Get color image.
color_image_size = (image_size[0], image_size[1], 4)
color = np.array(color, dtype=np.uint8).reshape(color_image_size)
color = color[:, :, :3] # remove alpha channel
return color.astype(np.uint8)
def _create_observation_space(self, image_size):
pi2 = math.pi * 2
obs_dict = collections.OrderedDict(
block_translation=spaces.Box(low=-5, high=5, shape=(2,)), # x,y
block_orientation=spaces.Box(low=-pi2, high=pi2, shape=(1,)), # phi
effector_translation=spaces.Box(
low=self.workspace_bounds[0] - 0.1, # Small buffer for to IK noise.
high=self.workspace_bounds[1] + 0.1,
), # x,y
effector_target_translation=spaces.Box(
low=self.workspace_bounds[0] - 0.1, # Small buffer for to IK noise.
high=self.workspace_bounds[1] + 0.1,
), # x,y
target_translation=spaces.Box(low=-5, high=5, shape=(2,)), # x,y
target_orientation=spaces.Box(
low=-pi2,
high=pi2,
shape=(1,),
), # theta
)
if image_size is not None:
obs_dict["rgb"] = spaces.Box(
low=0, high=255, shape=(image_size[0], image_size[1], 3), dtype=np.uint8
)
return spaces.Dict(obs_dict)
def get_pybullet_state(self):
"""Save pybullet state of the scene.
Returns:
dict containing 'robots', 'robot_end_effectors', 'targets', 'objects',
each containing a list of ObjState.
"""
state: Dict[str, List[ObjState]] = {}
state["robots"] = [
XarmState.get_bullet_state(
self._pybullet_client,
self.robot.xarm,
target_effector_pose=self._target_effector_pose,
goal_translation=self.get_goal_translation(),
)
]
state["robot_end_effectors"] = []
if self.robot.end_effector:
state["robot_end_effectors"].append(
ObjState.get_bullet_state(
self._pybullet_client, self.robot.end_effector
)
)
state["targets"] = []
if self._target_id:
state["targets"].append(
ObjState.get_bullet_state(self._pybullet_client, self._target_id)
)
state["objects"] = []
for obj_id in self.get_obj_ids():
state["objects"].append(
ObjState.get_bullet_state(self._pybullet_client, obj_id)
)
return state
def set_pybullet_state(self, state):
"""Restore pyullet state.
WARNING: py_environment wrapper assumes environments aren't reset in their
constructor and will often reset the environment unintentionally. It is
always recommeneded that you call env.reset on the tfagents wrapper before
playback (replaying pybullet_state).
Args:
state: dict containing 'robots', 'robot_end_effectors', 'targets',
'objects', each containing a list of ObjState.
"""
assert isinstance(state["robots"][0], XarmState)
xarm_state: XarmState = state["robots"][0]
xarm_state.set_bullet_state(self._pybullet_client, self.robot.xarm)
self._set_robot_target_effector_pose(xarm_state.target_effector_pose)
def _set_state_safe(obj_state, obj_id):
if obj_state is not None:
assert obj_id is not None, "Cannot set state for missing object."
obj_state.set_bullet_state(self._pybullet_client, obj_id)
else:
assert obj_id is None, f"No state found for obj_id {obj_id}"
robot_end_effectors = state["robot_end_effectors"]
_set_state_safe(
None if not robot_end_effectors else robot_end_effectors[0],
self.robot.end_effector,
)
targets = state["targets"]
_set_state_safe(None if not targets else targets[0], self._target_id)
obj_ids = self.get_obj_ids()
assert len(state["objects"]) == len(obj_ids), "State length mismatch"
for obj_state, obj_id in zip(state["objects"], obj_ids):
_set_state_safe(obj_state, obj_id)
self.reset(reset_poses=False)
class BlockPushNormalized(gym.Env):
"""Simple XArm environment for block pushing, normalized state and actions."""
def __init__(
self,
control_frequency=10.0,
task=BlockTaskVariant.PUSH_NORMALIZED,
image_size=None,
shared_memory=False,
seed=None,
):
"""Creates an env instance.
Args:
control_frequency: Control frequency for the arm. Each env step will
advance the simulation by 1/control_frequency seconds.
task: enum for which task, see BlockTaskVariant enum.
image_size: Optional image size (height, width). If None, no image
observations will be used.
shared_memory: If True `pybullet.SHARED_MEMORY` is used to connect to
pybullet. Useful to debug.
seed: Optional seed for the environment.
"""
# Map normalized task to unnormalized task.
if task == BlockTaskVariant.PUSH_NORMALIZED:
env_task = BlockTaskVariant.PUSH
elif task == BlockTaskVariant.REACH_NORMALIZED:
env_task = BlockTaskVariant.REACH
else:
raise ValueError("Unsupported task %s" % str(task))
self._env = BlockPush(
control_frequency, env_task, image_size, shared_memory, seed
)
self.action_space = spaces.Box(low=-1, high=1, shape=(2,))
self.observation_space = spaces.Dict(
collections.OrderedDict(
effector_target_translation=spaces.Box(low=-1, high=1, shape=(2,)),
effector_target_to_block_translation=spaces.Box(
low=-1, high=1, shape=(2,)
),
block_orientation_cos_sin=spaces.Box(low=-1, high=1, shape=(2,)),
effector_target_to_target_translation=spaces.Box(
low=-1, high=1, shape=(2,)
),
target_orientation_cos_sin=spaces.Box(low=-1, high=1, shape=(2,)),
)
)
self.reset()
def get_control_frequency(self):
return self._env.get_control_frequency()
@property
def reach_target_translation(self):
return self._env.reach_target_translation
def seed(self, seed=None):
self._env.seed(seed)
def reset(self):
state = self._env.reset()
return self.calc_normalized_state(state)
def step(self, action):
# The environment is normalized [mean-3*std, mean+3*std] -> [-1, 1].
action = np.clip(action, a_min=-1.0, a_max=1.0)
state, reward, done, info = self._env.step(
self.calc_unnormalized_action(action)
)
state = self.calc_normalized_state(state)
reward = reward * 100 # Keep returns in [0, 100]
return state, reward, done, info
def render(self, mode="rgb_array"):
return self._env.render(mode)
def close(self):
self._env.close()
@staticmethod
def _normalize(values, values_min, values_max):
offset = (values_max + values_min) * 0.5
scale = (values_max - values_min) * 0.5
return (values - offset) / scale # [min, max] -> [-1, 1]
@staticmethod
def _unnormalize(values, values_min, values_max):
offset = (values_max + values_min) * 0.5
scale = (values_max - values_min) * 0.5
return values * scale + offset # [-1, 1] -> [min, max]
@classmethod
def calc_normalized_action(cls, action):
return cls._normalize(action, ACTION_MIN, ACTION_MAX)
@classmethod
def calc_unnormalized_action(cls, norm_action):
return cls._unnormalize(norm_action, ACTION_MIN, ACTION_MAX)
@classmethod
def calc_normalized_state(cls, state):
effector_target_translation = cls._normalize(
state["effector_target_translation"],
EFFECTOR_TARGET_TRANSLATION_MIN,
EFFECTOR_TARGET_TRANSLATION_MAX,
)
effector_target_to_block_translation = cls._normalize(
state["block_translation"] - state["effector_target_translation"],
EFFECTOR_TARGET_TO_BLOCK_TRANSLATION_MIN,
EFFECTOR_TARGET_TO_BLOCK_TRANSLATION_MAX,
)
ori = state["block_orientation"][0]
block_orientation_cos_sin = cls._normalize(
np.array([math.cos(ori), math.sin(ori)], np.float32),
BLOCK_ORIENTATION_COS_SIN_MIN,
BLOCK_ORIENTATION_COS_SIN_MAX,
)
effector_target_to_target_translation = cls._normalize(
state["target_translation"] - state["effector_target_translation"],
EFFECTOR_TARGET_TO_TARGET_TRANSLATION_MIN,
EFFECTOR_TARGET_TO_TARGET_TRANSLATION_MAX,
)
ori = state["target_orientation"][0]
target_orientation_cos_sin = cls._normalize(
np.array([math.cos(ori), math.sin(ori)], np.float32),
TARGET_ORIENTATION_COS_SIN_MIN,
TARGET_ORIENTATION_COS_SIN_MAX,
)
# Note: We do not include effector_translation in the normalized state.
# This means the unnormalized -> normalized mapping is not invertable.
return collections.OrderedDict(
effector_target_translation=effector_target_translation,
effector_target_to_block_translation=effector_target_to_block_translation,
block_orientation_cos_sin=block_orientation_cos_sin,
effector_target_to_target_translation=effector_target_to_target_translation,
target_orientation_cos_sin=target_orientation_cos_sin,
)
@classmethod
def calc_unnormalized_state(cls, norm_state):
effector_target_translation = cls._unnormalize(
norm_state["effector_target_translation"],
EFFECTOR_TARGET_TRANSLATION_MIN,
EFFECTOR_TARGET_TRANSLATION_MAX,
)
# Note: normalized state does not include effector_translation state, this
# means this component will be missing (and is marked nan).
effector_translation = np.array([np.nan, np.nan], np.float32)
effector_target_to_block_translation = cls._unnormalize(
norm_state["effector_target_to_block_translation"],
EFFECTOR_TARGET_TO_BLOCK_TRANSLATION_MIN,
EFFECTOR_TARGET_TO_BLOCK_TRANSLATION_MAX,
)
block_translation = (
effector_target_to_block_translation + effector_target_translation
)
ori_cos_sin = cls._unnormalize(
norm_state["block_orientation_cos_sin"],
BLOCK_ORIENTATION_COS_SIN_MIN,
BLOCK_ORIENTATION_COS_SIN_MAX,
)
block_orientation = np.array(
[math.atan2(ori_cos_sin[1], ori_cos_sin[0])], np.float32
)
effector_target_to_target_translation = cls._unnormalize(
norm_state["effector_target_to_target_translation"],
EFFECTOR_TARGET_TO_TARGET_TRANSLATION_MIN,
EFFECTOR_TARGET_TO_TARGET_TRANSLATION_MAX,
)
target_translation = (
effector_target_to_target_translation + effector_target_translation
)
ori_cos_sin = cls._unnormalize(
norm_state["target_orientation_cos_sin"],
TARGET_ORIENTATION_COS_SIN_MIN,
TARGET_ORIENTATION_COS_SIN_MAX,
)
target_orientation = np.array(
[math.atan2(ori_cos_sin[1], ori_cos_sin[0])], np.float32
)
return collections.OrderedDict(
block_translation=block_translation,
block_orientation=block_orientation,
effector_translation=effector_translation,
effector_target_translation=effector_target_translation,
target_translation=target_translation,
target_orientation=target_orientation,
)
def get_pybullet_state(self):
return self._env.get_pybullet_state()
def set_pybullet_state(self, state):
return self._env.set_pybullet_state(state)
@property
def pybullet_client(self):
return self._env.pybullet_client
def calc_camera_params(self, image_size):
return self._env.calc_camera_params(image_size)
def _compute_state(self):
return self.calc_normalized_state(self._env._compute_state()) # pylint: disable=protected-access
# Make sure we only register once to allow us to reload the module in colab for
# debugging.
if "BlockPush-v0" in registration.registry.env_specs:
del registration.registry["BlockInsert-v0"]
del registration.registry["BlockPush-v0"]
del registration.registry["BlockPushNormalized-v0"]
del registration.registry["BlockPushRgbNormalized-v0"]
del registration.registry["BlockReach-v0"]
del registration.registry["BlockReachNormalized-v0"]
del registration.registry["BlockReachRgbNormalized-v0"]
del registration.registry["SharedBlockInsert-v0"]
del registration.registry["SharedBlockPush-v0"]
del registration.registry["SharedBlockReach-v0"]
registration.register(
id="BlockInsert-v0",
entry_point=BlockPush,
kwargs=dict(task=BlockTaskVariant.INSERT),
max_episode_steps=50,
)
registration.register(id="BlockPush-v0", entry_point=BlockPush, max_episode_steps=100)
registration.register(
id="BlockPushNormalized-v0",
entry_point=BlockPushNormalized,
kwargs=dict(task=BlockTaskVariant.PUSH_NORMALIZED),
max_episode_steps=100,
)
registration.register(
id="BlockPushRgb-v0",
entry_point=BlockPush,
max_episode_steps=100,
kwargs=dict(image_size=(IMAGE_HEIGHT, IMAGE_WIDTH)),
)
registration.register(
id="BlockPushRgbNormalized-v0",
entry_point=BlockPushNormalized,
kwargs=dict(
task=BlockTaskVariant.PUSH_NORMALIZED, image_size=(IMAGE_HEIGHT, IMAGE_WIDTH)
),
max_episode_steps=100,
)
registration.register(
id="BlockReach-v0",
entry_point=BlockPush,
kwargs=dict(task=BlockTaskVariant.REACH),
max_episode_steps=50,
)
registration.register(
id="BlockReachRgb-v0",
entry_point=BlockPush,
max_episode_steps=100,
kwargs=dict(task=BlockTaskVariant.REACH, image_size=(IMAGE_HEIGHT, IMAGE_WIDTH)),
)
registration.register(
id="BlockReachNormalized-v0",
entry_point=BlockPushNormalized,
kwargs=dict(task=BlockTaskVariant.REACH_NORMALIZED),
max_episode_steps=50,
)
registration.register(
id="BlockReachRgbNormalized-v0",
entry_point=BlockPushNormalized,
kwargs=dict(
task=BlockTaskVariant.REACH_NORMALIZED, image_size=(IMAGE_HEIGHT, IMAGE_WIDTH)
),
max_episode_steps=50,
)
registration.register(
id="SharedBlockInsert-v0",
entry_point=BlockPush,
kwargs=dict(task=BlockTaskVariant.INSERT, shared_memory=True),
max_episode_steps=50,
)
registration.register(
id="SharedBlockPush-v0",
entry_point=BlockPush,
kwargs=dict(shared_memory=True),
max_episode_steps=100,
)
registration.register(
id="SharedBlockPushNormalized-v0",
entry_point=BlockPushNormalized,
kwargs=dict(task=BlockTaskVariant.PUSH_NORMALIZED, shared_memory=True),
max_episode_steps=100,
)
registration.register(
id="SharedBlockReach-v0",
entry_point=BlockPush,
kwargs=dict(task=BlockTaskVariant.REACH, shared_memory=True),
max_episode_steps=50,
)
|