File size: 12,214 Bytes
393d3de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
# coding=utf-8
# Copyright 2022 The Reach ML Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Discontinuous block pushing."""

import collections
import enum
import math

from gym import spaces
from gym.envs import registration
from . import block_pushing
from .utils import utils_pybullet
from .utils.pose3d import Pose3d
import numpy as np
from scipy.spatial import transform
import pybullet
import pybullet_utils.bullet_client as bullet_client

ZONE2_URDF_PATH = "third_party/py/envs/assets/zone2.urdf"

MIN_TARGET_DIST = 0.15
NUM_RESET_ATTEMPTS = 1000


def build_env_name(task, shared_memory, use_image_obs):
    """Construct the env name from parameters."""
    del task
    env_name = "BlockPushDiscontinuous"

    if use_image_obs:
        env_name = env_name + "Rgb"

    if shared_memory:
        env_name = "Shared" + env_name

    env_name = env_name + "-v0"

    return env_name


class BlockTaskVariant(enum.Enum):
    REACH = "Reach"
    REACH_NORMALIZED = "ReachNormalized"
    PUSH = "Push"
    PUSH_NORMALIZED = "PushNormalized"
    INSERT = "Insert"


# pytype: skip-file
class BlockPushDiscontinuous(block_pushing.BlockPush):
    """Discontinuous block pushing."""

    def __init__(
        self,
        control_frequency=10.0,
        task=BlockTaskVariant.PUSH,
        image_size=None,
        shared_memory=False,
        seed=None,
        goal_dist_tolerance=0.04,
    ):
        super(BlockPushDiscontinuous, self).__init__(
            control_frequency=control_frequency,
            task=task,
            image_size=image_size,
            shared_memory=shared_memory,
            seed=seed,
            goal_dist_tolerance=goal_dist_tolerance,
        )

    @property
    def target_poses(self):
        return self._target_poses

    def get_goal_translation(self):
        """Return the translation component of the goal (2D)."""
        if self._target_poses:
            return [i.translation for i in self._target_poses]
        else:
            return None

    def _setup_pybullet_scene(self):
        self._pybullet_client = bullet_client.BulletClient(self._connection_mode)

        # Temporarily disable rendering to speed up loading URDFs.
        pybullet.configureDebugVisualizer(pybullet.COV_ENABLE_RENDERING, 0)

        self._setup_workspace_and_robot()
        target_urdf_path = block_pushing.ZONE_URDF_PATH

        self._target_ids = []
        for _ in [block_pushing.ZONE_URDF_PATH, ZONE2_URDF_PATH]:
            self._target_ids.append(
                utils_pybullet.load_urdf(
                    self._pybullet_client, target_urdf_path, useFixedBase=True
                )
            )
        self._block_ids = [
            utils_pybullet.load_urdf(
                self._pybullet_client, block_pushing.BLOCK_URDF_PATH, useFixedBase=False
            )
        ]

        # Re-enable rendering.
        pybullet.configureDebugVisualizer(pybullet.COV_ENABLE_RENDERING, 1)

        self.step_simulation_to_stabilize()

    def _reset_target_poses(self, workspace_center_x):
        """Resets target poses."""
        self._target_poses = [None for _ in range(len(self._target_ids))]

        def _reset_target_pose(idx, avoid=None):
            def _get_random_translation():
                # Choose x,y randomly.
                target_x = workspace_center_x + self._rng.uniform(low=-0.10, high=0.10)
                # Fix ys for this environment.
                if idx == 0:
                    target_y = 0
                else:
                    target_y = 0.4
                target_translation = np.array([target_x, target_y, 0.020])
                return target_translation

            if avoid is None:
                target_translation = _get_random_translation()
            else:
                # Reject targets too close to `avoid`.
                for _ in range(NUM_RESET_ATTEMPTS):
                    target_translation = _get_random_translation()
                    dist = np.linalg.norm(target_translation[0] - avoid[0])
                    if dist > MIN_TARGET_DIST:
                        break
            target_sampled_angle = math.pi + self._rng.uniform(
                low=-math.pi / 6, high=math.pi / 6
            )
            target_rotation = transform.Rotation.from_rotvec(
                [0, 0, target_sampled_angle]
            )
            self._pybullet_client.resetBasePositionAndOrientation(
                self._target_ids[idx],
                target_translation.tolist(),
                target_rotation.as_quat().tolist(),
            )
            self._target_poses[idx] = Pose3d(
                rotation=target_rotation, translation=target_translation
            )

        try_idx = 0
        while True:
            # Choose the first target.
            _reset_target_pose(0)
            # Choose the second target, avoiding the first.
            _reset_target_pose(1, avoid=self._target_poses[0].translation)
            dist = np.linalg.norm(
                self._target_poses[0].translation[0]
                - self._target_poses[1].translation[0]
            )
            if dist > MIN_TARGET_DIST:
                break
            try_idx += 1
            if try_idx >= NUM_RESET_ATTEMPTS:
                raise ValueError("could not find matching target")
        assert dist > MIN_TARGET_DIST

    def reset(self):
        self._pybullet_client.restoreState(self._saved_state)

        rotation = transform.Rotation.from_rotvec([0, math.pi, 0])
        translation = np.array([0.3, -0.4, block_pushing.EFFECTOR_HEIGHT])
        starting_pose = Pose3d(rotation=rotation, translation=translation)
        self._set_robot_target_effector_pose(starting_pose)

        workspace_center_x = 0.4

        # Reset block pose.
        block_x = workspace_center_x + self._rng.uniform(low=-0.1, high=0.1)
        block_y = -0.2 + self._rng.uniform(low=-0.15, high=0.15)
        block_translation = np.array([block_x, block_y, 0])
        block_sampled_angle = self._rng.uniform(math.pi)
        block_rotation = transform.Rotation.from_rotvec([0, 0, block_sampled_angle])

        self._pybullet_client.resetBasePositionAndOrientation(
            self._block_ids[0],
            block_translation.tolist(),
            block_rotation.as_quat().tolist(),
        )

        # Reset target pose.
        self._reset_target_poses(workspace_center_x)

        self.step_simulation_to_stabilize()
        state = self._compute_state()
        self._previous_state = state
        self.min_dist_to_first_goal = np.inf
        self.min_dist_to_second_goal = np.inf
        self.steps = 0
        return state

    def _compute_goal_distance(self, state):
        # Reward is 1. blocks is inside any target.
        return np.mean([self.min_dist_to_first_goal, self.min_dist_to_second_goal])

    def _compute_state(self):
        effector_pose = self._robot.forward_kinematics()
        block_position_and_orientation = (
            self._pybullet_client.getBasePositionAndOrientation(self._block_ids[0])
        )
        block_pose = Pose3d(
            rotation=transform.Rotation.from_quat(block_position_and_orientation[1]),
            translation=block_position_and_orientation[0],
        )

        def _yaw_from_pose(pose):
            return np.array([pose.rotation.as_euler("xyz", degrees=False)[-1]])

        obs = collections.OrderedDict(
            block_translation=block_pose.translation[0:2],
            block_orientation=_yaw_from_pose(block_pose),
            effector_translation=effector_pose.translation[0:2],
            effector_target_translation=self._target_effector_pose.translation[0:2],
            target_translation=self._target_poses[0].translation[0:2],
            target_orientation=_yaw_from_pose(self._target_poses[0]),
            target2_translation=self._target_poses[1].translation[0:2],
            target2_orientation=_yaw_from_pose(self._target_poses[1]),
        )
        if self._image_size is not None:
            obs["rgb"] = self._render_camera(self._image_size)
        return obs

    def step(self, action):
        self._step_robot_and_sim(action)
        state = self._compute_state()
        reward = self._get_reward(state)
        done = False
        if reward > 0.0:
            done = True
        # Cache so we can compute success.
        self.state = state
        return state, reward, done, {}

    def dist(self, state, target):
        # Reward is 1. blocks is inside any target.
        return np.linalg.norm(
            state["block_translation"] - state["%s_translation" % target]
        )

    def _get_reward(self, state):
        """Reward is 1.0 if agent hits both goals and stays at second."""
        # This also statefully updates these values.
        self.min_dist_to_first_goal = min(
            self.dist(state, "target"), self.min_dist_to_first_goal
        )
        self.min_dist_to_second_goal = min(
            self.dist(state, "target2"), self.min_dist_to_second_goal
        )

        def _reward(thresh):
            reward_first = True if self.min_dist_to_first_goal < thresh else False
            reward_second = True if self.min_dist_to_second_goal < thresh else False
            return 1.0 if (reward_first and reward_second) else 0.0

        reward = _reward(self.goal_dist_tolerance)
        return reward

    @property
    def succeeded(self):
        thresh = self.goal_dist_tolerance
        hit_first = True if self.min_dist_to_first_goal < thresh else False
        hit_second = True if self.min_dist_to_first_goal < thresh else False
        current_distance_to_second = self.dist(self.state, "target2")
        still_at_second = True if current_distance_to_second < thresh else False
        return hit_first and hit_second and still_at_second

    def _create_observation_space(self, image_size):
        pi2 = math.pi * 2

        obs_dict = collections.OrderedDict(
            block_translation=spaces.Box(low=-5, high=5, shape=(2,)),  # x,y
            block_orientation=spaces.Box(low=-pi2, high=pi2, shape=(1,)),  # phi
            effector_translation=spaces.Box(
                # Small buffer for to IK noise.
                low=block_pushing.WORKSPACE_BOUNDS[0] - 0.1,
                high=block_pushing.WORKSPACE_BOUNDS[1] + 0.1,
            ),  # x,y
            effector_target_translation=spaces.Box(
                # Small buffer for to IK noise.
                low=block_pushing.WORKSPACE_BOUNDS[0] - 0.1,
                high=block_pushing.WORKSPACE_BOUNDS[1] + 0.1,
            ),  # x,y
            target_translation=spaces.Box(low=-5, high=5, shape=(2,)),  # x,y
            target_orientation=spaces.Box(
                low=-pi2,
                high=pi2,
                shape=(1,),
            ),  # theta
            target2_translation=spaces.Box(low=-5, high=5, shape=(2,)),  # x,y
            target2_orientation=spaces.Box(
                low=-pi2,
                high=pi2,
                shape=(1,),
            ),  # theta
        )
        if image_size is not None:
            obs_dict["rgb"] = spaces.Box(
                low=0, high=255, shape=(image_size[0], image_size[1], 3), dtype=np.uint8
            )
        return spaces.Dict(obs_dict)


if "BlockPushDiscontinuous-v0" in registration.registry.env_specs:
    del registration.registry["BlockPushDiscontinuous-v0"]

registration.register(
    id="BlockPushDiscontinuous-v0",
    entry_point=BlockPushDiscontinuous,
    max_episode_steps=200,
)

registration.register(
    id="BlockPushDiscontinuousRgb-v0",
    entry_point=BlockPushDiscontinuous,
    max_episode_steps=200,
    kwargs=dict(image_size=(block_pushing.IMAGE_HEIGHT, block_pushing.IMAGE_WIDTH)),
)