File size: 12,214 Bytes
393d3de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
# coding=utf-8
# Copyright 2022 The Reach ML Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Discontinuous block pushing."""
import collections
import enum
import math
from gym import spaces
from gym.envs import registration
from . import block_pushing
from .utils import utils_pybullet
from .utils.pose3d import Pose3d
import numpy as np
from scipy.spatial import transform
import pybullet
import pybullet_utils.bullet_client as bullet_client
ZONE2_URDF_PATH = "third_party/py/envs/assets/zone2.urdf"
MIN_TARGET_DIST = 0.15
NUM_RESET_ATTEMPTS = 1000
def build_env_name(task, shared_memory, use_image_obs):
"""Construct the env name from parameters."""
del task
env_name = "BlockPushDiscontinuous"
if use_image_obs:
env_name = env_name + "Rgb"
if shared_memory:
env_name = "Shared" + env_name
env_name = env_name + "-v0"
return env_name
class BlockTaskVariant(enum.Enum):
REACH = "Reach"
REACH_NORMALIZED = "ReachNormalized"
PUSH = "Push"
PUSH_NORMALIZED = "PushNormalized"
INSERT = "Insert"
# pytype: skip-file
class BlockPushDiscontinuous(block_pushing.BlockPush):
"""Discontinuous block pushing."""
def __init__(
self,
control_frequency=10.0,
task=BlockTaskVariant.PUSH,
image_size=None,
shared_memory=False,
seed=None,
goal_dist_tolerance=0.04,
):
super(BlockPushDiscontinuous, self).__init__(
control_frequency=control_frequency,
task=task,
image_size=image_size,
shared_memory=shared_memory,
seed=seed,
goal_dist_tolerance=goal_dist_tolerance,
)
@property
def target_poses(self):
return self._target_poses
def get_goal_translation(self):
"""Return the translation component of the goal (2D)."""
if self._target_poses:
return [i.translation for i in self._target_poses]
else:
return None
def _setup_pybullet_scene(self):
self._pybullet_client = bullet_client.BulletClient(self._connection_mode)
# Temporarily disable rendering to speed up loading URDFs.
pybullet.configureDebugVisualizer(pybullet.COV_ENABLE_RENDERING, 0)
self._setup_workspace_and_robot()
target_urdf_path = block_pushing.ZONE_URDF_PATH
self._target_ids = []
for _ in [block_pushing.ZONE_URDF_PATH, ZONE2_URDF_PATH]:
self._target_ids.append(
utils_pybullet.load_urdf(
self._pybullet_client, target_urdf_path, useFixedBase=True
)
)
self._block_ids = [
utils_pybullet.load_urdf(
self._pybullet_client, block_pushing.BLOCK_URDF_PATH, useFixedBase=False
)
]
# Re-enable rendering.
pybullet.configureDebugVisualizer(pybullet.COV_ENABLE_RENDERING, 1)
self.step_simulation_to_stabilize()
def _reset_target_poses(self, workspace_center_x):
"""Resets target poses."""
self._target_poses = [None for _ in range(len(self._target_ids))]
def _reset_target_pose(idx, avoid=None):
def _get_random_translation():
# Choose x,y randomly.
target_x = workspace_center_x + self._rng.uniform(low=-0.10, high=0.10)
# Fix ys for this environment.
if idx == 0:
target_y = 0
else:
target_y = 0.4
target_translation = np.array([target_x, target_y, 0.020])
return target_translation
if avoid is None:
target_translation = _get_random_translation()
else:
# Reject targets too close to `avoid`.
for _ in range(NUM_RESET_ATTEMPTS):
target_translation = _get_random_translation()
dist = np.linalg.norm(target_translation[0] - avoid[0])
if dist > MIN_TARGET_DIST:
break
target_sampled_angle = math.pi + self._rng.uniform(
low=-math.pi / 6, high=math.pi / 6
)
target_rotation = transform.Rotation.from_rotvec(
[0, 0, target_sampled_angle]
)
self._pybullet_client.resetBasePositionAndOrientation(
self._target_ids[idx],
target_translation.tolist(),
target_rotation.as_quat().tolist(),
)
self._target_poses[idx] = Pose3d(
rotation=target_rotation, translation=target_translation
)
try_idx = 0
while True:
# Choose the first target.
_reset_target_pose(0)
# Choose the second target, avoiding the first.
_reset_target_pose(1, avoid=self._target_poses[0].translation)
dist = np.linalg.norm(
self._target_poses[0].translation[0]
- self._target_poses[1].translation[0]
)
if dist > MIN_TARGET_DIST:
break
try_idx += 1
if try_idx >= NUM_RESET_ATTEMPTS:
raise ValueError("could not find matching target")
assert dist > MIN_TARGET_DIST
def reset(self):
self._pybullet_client.restoreState(self._saved_state)
rotation = transform.Rotation.from_rotvec([0, math.pi, 0])
translation = np.array([0.3, -0.4, block_pushing.EFFECTOR_HEIGHT])
starting_pose = Pose3d(rotation=rotation, translation=translation)
self._set_robot_target_effector_pose(starting_pose)
workspace_center_x = 0.4
# Reset block pose.
block_x = workspace_center_x + self._rng.uniform(low=-0.1, high=0.1)
block_y = -0.2 + self._rng.uniform(low=-0.15, high=0.15)
block_translation = np.array([block_x, block_y, 0])
block_sampled_angle = self._rng.uniform(math.pi)
block_rotation = transform.Rotation.from_rotvec([0, 0, block_sampled_angle])
self._pybullet_client.resetBasePositionAndOrientation(
self._block_ids[0],
block_translation.tolist(),
block_rotation.as_quat().tolist(),
)
# Reset target pose.
self._reset_target_poses(workspace_center_x)
self.step_simulation_to_stabilize()
state = self._compute_state()
self._previous_state = state
self.min_dist_to_first_goal = np.inf
self.min_dist_to_second_goal = np.inf
self.steps = 0
return state
def _compute_goal_distance(self, state):
# Reward is 1. blocks is inside any target.
return np.mean([self.min_dist_to_first_goal, self.min_dist_to_second_goal])
def _compute_state(self):
effector_pose = self._robot.forward_kinematics()
block_position_and_orientation = (
self._pybullet_client.getBasePositionAndOrientation(self._block_ids[0])
)
block_pose = Pose3d(
rotation=transform.Rotation.from_quat(block_position_and_orientation[1]),
translation=block_position_and_orientation[0],
)
def _yaw_from_pose(pose):
return np.array([pose.rotation.as_euler("xyz", degrees=False)[-1]])
obs = collections.OrderedDict(
block_translation=block_pose.translation[0:2],
block_orientation=_yaw_from_pose(block_pose),
effector_translation=effector_pose.translation[0:2],
effector_target_translation=self._target_effector_pose.translation[0:2],
target_translation=self._target_poses[0].translation[0:2],
target_orientation=_yaw_from_pose(self._target_poses[0]),
target2_translation=self._target_poses[1].translation[0:2],
target2_orientation=_yaw_from_pose(self._target_poses[1]),
)
if self._image_size is not None:
obs["rgb"] = self._render_camera(self._image_size)
return obs
def step(self, action):
self._step_robot_and_sim(action)
state = self._compute_state()
reward = self._get_reward(state)
done = False
if reward > 0.0:
done = True
# Cache so we can compute success.
self.state = state
return state, reward, done, {}
def dist(self, state, target):
# Reward is 1. blocks is inside any target.
return np.linalg.norm(
state["block_translation"] - state["%s_translation" % target]
)
def _get_reward(self, state):
"""Reward is 1.0 if agent hits both goals and stays at second."""
# This also statefully updates these values.
self.min_dist_to_first_goal = min(
self.dist(state, "target"), self.min_dist_to_first_goal
)
self.min_dist_to_second_goal = min(
self.dist(state, "target2"), self.min_dist_to_second_goal
)
def _reward(thresh):
reward_first = True if self.min_dist_to_first_goal < thresh else False
reward_second = True if self.min_dist_to_second_goal < thresh else False
return 1.0 if (reward_first and reward_second) else 0.0
reward = _reward(self.goal_dist_tolerance)
return reward
@property
def succeeded(self):
thresh = self.goal_dist_tolerance
hit_first = True if self.min_dist_to_first_goal < thresh else False
hit_second = True if self.min_dist_to_first_goal < thresh else False
current_distance_to_second = self.dist(self.state, "target2")
still_at_second = True if current_distance_to_second < thresh else False
return hit_first and hit_second and still_at_second
def _create_observation_space(self, image_size):
pi2 = math.pi * 2
obs_dict = collections.OrderedDict(
block_translation=spaces.Box(low=-5, high=5, shape=(2,)), # x,y
block_orientation=spaces.Box(low=-pi2, high=pi2, shape=(1,)), # phi
effector_translation=spaces.Box(
# Small buffer for to IK noise.
low=block_pushing.WORKSPACE_BOUNDS[0] - 0.1,
high=block_pushing.WORKSPACE_BOUNDS[1] + 0.1,
), # x,y
effector_target_translation=spaces.Box(
# Small buffer for to IK noise.
low=block_pushing.WORKSPACE_BOUNDS[0] - 0.1,
high=block_pushing.WORKSPACE_BOUNDS[1] + 0.1,
), # x,y
target_translation=spaces.Box(low=-5, high=5, shape=(2,)), # x,y
target_orientation=spaces.Box(
low=-pi2,
high=pi2,
shape=(1,),
), # theta
target2_translation=spaces.Box(low=-5, high=5, shape=(2,)), # x,y
target2_orientation=spaces.Box(
low=-pi2,
high=pi2,
shape=(1,),
), # theta
)
if image_size is not None:
obs_dict["rgb"] = spaces.Box(
low=0, high=255, shape=(image_size[0], image_size[1], 3), dtype=np.uint8
)
return spaces.Dict(obs_dict)
if "BlockPushDiscontinuous-v0" in registration.registry.env_specs:
del registration.registry["BlockPushDiscontinuous-v0"]
registration.register(
id="BlockPushDiscontinuous-v0",
entry_point=BlockPushDiscontinuous,
max_episode_steps=200,
)
registration.register(
id="BlockPushDiscontinuousRgb-v0",
entry_point=BlockPushDiscontinuous,
max_episode_steps=200,
kwargs=dict(image_size=(block_pushing.IMAGE_HEIGHT, block_pushing.IMAGE_WIDTH)),
)
|