File size: 30,527 Bytes
393d3de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 |
# coding=utf-8
# Copyright 2022 The Reach ML Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Multimodal block environments for the XArm."""
import einops
import collections
import logging
import math
from typing import Dict, List
from gym import spaces
from gym.envs import registration
from . import block_pushing
from .utils import utils_pybullet
from .utils.pose3d import Pose3d
from .utils.utils_pybullet import ObjState
from .utils.utils_pybullet import XarmState
import numpy as np
from scipy.spatial import transform
import pybullet
import pybullet_utils.bullet_client as bullet_client
import torch
# pytype: skip-file
BLOCK2_URDF_PATH = "third_party/py/envs/assets/block2.urdf"
ZONE2_URDF_PATH = "third_party/py/envs/assets/zone2.urdf"
# When resetting multiple targets, they should all be this far apart.
MIN_BLOCK_DIST = 0.1
MIN_TARGET_DIST = 0.12
# pylint: enable=line-too-long
NUM_RESET_ATTEMPTS = 1000
# Random movement of blocks
RANDOM_X_SHIFT = 0.1
RANDOM_Y_SHIFT = 0.15
logging.basicConfig(
level="INFO",
format="%(asctime)s [%(levelname)s] %(message)s",
filemode="w",
)
logger = logging.getLogger()
def build_env_name(task, shared_memory, use_image_obs):
"""Construct the env name from parameters."""
del task
env_name = "BlockPushMultimodal"
if use_image_obs:
env_name = env_name + "Rgb"
if shared_memory:
env_name = "Shared" + env_name
env_name = env_name + "-v0"
return env_name
class BlockPushMultimodal(block_pushing.BlockPush):
"""2 blocks, 2 targets."""
def __init__(
self,
control_frequency=10.0,
task=block_pushing.BlockTaskVariant.PUSH,
image_size=(224, 224),
shared_memory=False,
seed=None,
goal_dist_tolerance=0.05,
):
"""Creates an env instance.
Args:
control_frequency: Control frequency for the arm. Each env step will
advance the simulation by 1/control_frequency seconds.
task: enum for which task, see BlockTaskVariant enum.
image_size: Optional image size (height, width). If None, no image
observations will be used.
shared_memory: If True `pybullet.SHARED_MEMORY` is used to connect to
pybullet. Useful to debug.
seed: Optional seed for the environment.
goal_dist_tolerance: float, how far away from the goal to terminate.
"""
self._target_ids = None
self._target_poses = None
super(BlockPushMultimodal, self).__init__(
control_frequency=control_frequency,
task=task,
image_size=image_size,
shared_memory=shared_memory,
seed=seed,
goal_dist_tolerance=goal_dist_tolerance,
)
self._init_distance = [-1.0, -1.0]
self._in_target = [[-1.0, -1.0], [-1.0, -1.0]]
self._first_move = [-1, -1]
self._step_num = 0
self.moved = 0
self.entered = 0
@property
def target_poses(self):
return self._target_poses
def get_goal_translation(self):
"""Return the translation component of the goal (2D)."""
if self._target_poses:
return [i.translation for i in self._target_poses]
else:
return None
def _setup_pybullet_scene(self):
self._pybullet_client = bullet_client.BulletClient(self._connection_mode)
# Temporarily disable rendering to speed up loading URDFs.
pybullet.configureDebugVisualizer(pybullet.COV_ENABLE_RENDERING, 0)
self._setup_workspace_and_robot()
self._target_ids = [
utils_pybullet.load_urdf(self._pybullet_client, i, useFixedBase=True)
for i in [block_pushing.ZONE_URDF_PATH, ZONE2_URDF_PATH]
]
self._block_ids = []
for i in [block_pushing.BLOCK_URDF_PATH, BLOCK2_URDF_PATH]:
self._block_ids.append(
utils_pybullet.load_urdf(self._pybullet_client, i, useFixedBase=False)
)
# Re-enable rendering.
pybullet.configureDebugVisualizer(pybullet.COV_ENABLE_RENDERING, 1)
self.step_simulation_to_stabilize()
def _reset_block_poses(self, workspace_center_x):
"""Resets block poses."""
# Helper for choosing random block position.
def _reset_block_pose(idx, add=0.0, avoid=None):
def _get_random_translation():
block_x = (
workspace_center_x
+ add
+ self._rng.uniform(low=-RANDOM_X_SHIFT, high=RANDOM_X_SHIFT)
)
block_y = -0.2 + self._rng.uniform(
low=-RANDOM_Y_SHIFT, high=RANDOM_Y_SHIFT
)
block_translation = np.array([block_x, block_y, 0])
return block_translation
if avoid is None:
block_translation = _get_random_translation()
else:
# Reject targets too close to `avoid`.
for _ in range(NUM_RESET_ATTEMPTS):
block_translation = _get_random_translation()
dist = np.linalg.norm(block_translation[0] - avoid[0])
# print('block inner try_idx %d, dist %.3f' % (try_idx, dist))
if dist > MIN_BLOCK_DIST:
break
block_sampled_angle = self._rng.uniform(math.pi)
block_rotation = transform.Rotation.from_rotvec([0, 0, block_sampled_angle])
self._pybullet_client.resetBasePositionAndOrientation(
self._block_ids[idx],
block_translation.tolist(),
block_rotation.as_quat().tolist(),
)
return block_translation
# Reject targets too close to `avoid`.
for _ in range(NUM_RESET_ATTEMPTS):
# Reset first block.
b0_translation = _reset_block_pose(0)
# Reset second block away from first block.
b1_translation = _reset_block_pose(1, avoid=b0_translation)
dist = np.linalg.norm(b0_translation[0] - b1_translation[0])
if dist > MIN_BLOCK_DIST:
break
else:
raise ValueError("could not find matching block")
assert dist > MIN_BLOCK_DIST
def _reset_target_poses(self, workspace_center_x):
"""Resets target poses."""
def _reset_target_pose(idx, add=0.0, avoid=None):
def _get_random_translation():
# Choose x,y randomly.
target_x = (
workspace_center_x
+ add
+ self._rng.uniform(
low=-0.05 * RANDOM_X_SHIFT, high=0.05 * RANDOM_X_SHIFT
)
)
target_y = 0.2 + self._rng.uniform(
low=-0.05 * RANDOM_Y_SHIFT, high=0.05 * RANDOM_Y_SHIFT
)
target_translation = np.array([target_x, target_y, 0.020])
return target_translation
if avoid is None:
target_translation = _get_random_translation()
else:
# Reject targets too close to `avoid`.
for _ in range(NUM_RESET_ATTEMPTS):
target_translation = _get_random_translation()
dist = np.linalg.norm(target_translation[0] - avoid[0])
# print('target inner try_idx %d, dist %.3f' % (try_idx, dist))
if dist > MIN_TARGET_DIST:
break
target_sampled_angle = math.pi + self._rng.uniform(
low=-math.pi / 30, high=math.pi / 30
)
target_rotation = transform.Rotation.from_rotvec(
[0, 0, target_sampled_angle]
)
self._pybullet_client.resetBasePositionAndOrientation(
self._target_ids[idx],
target_translation.tolist(),
target_rotation.as_quat().tolist(),
)
self._target_poses[idx] = Pose3d(
rotation=target_rotation, translation=target_translation
)
if self._target_poses is None:
self._target_poses = [None for _ in range(len(self._target_ids))]
for _ in range(NUM_RESET_ATTEMPTS):
# Choose the first target.
add = 0.12 * np.random.choice([-1, 1])
# Randomly flip the location of the targets.
_reset_target_pose(0, add=add)
_reset_target_pose(1, add=-add, avoid=self._target_poses[0].translation)
dist = np.linalg.norm(
self._target_poses[0].translation[0]
- self._target_poses[1].translation[0]
)
if dist > MIN_TARGET_DIST:
break
else:
raise ValueError("could not find matching target")
assert dist > MIN_TARGET_DIST
def _reset_object_poses(self, workspace_center_x, workspace_center_y):
# Reset block poses.
self._reset_block_poses(workspace_center_x)
# Reset target poses.
self._reset_target_poses(workspace_center_x)
self._init_distance = [-1.0, -1.0]
self._in_target = [[-1.0, -1.0], [-1.0, -1.0]]
self._step_num = 0
def reset(self, reset_poses=True):
workspace_center_x = 0.4
workspace_center_y = 0.0
self.moved = 0
self.entered = 0
if reset_poses:
self._pybullet_client.restoreState(self._saved_state)
rotation = transform.Rotation.from_rotvec([0, math.pi, 0])
translation = np.array([0.3, -0.4, block_pushing.EFFECTOR_HEIGHT])
starting_pose = Pose3d(rotation=rotation, translation=translation)
self._set_robot_target_effector_pose(starting_pose)
self._reset_object_poses(workspace_center_x, workspace_center_y)
else:
self._target_poses = [
self._get_target_pose(idx) for idx in self._target_ids
]
if reset_poses:
self.step_simulation_to_stabilize()
state = self._compute_state()
self._previous_state = state
return state
def _get_target_pose(self, idx):
(
target_translation,
target_orientation_quat,
) = self._pybullet_client.getBasePositionAndOrientation(idx)
target_rotation = transform.Rotation.from_quat(target_orientation_quat)
target_translation = np.array(target_translation)
return Pose3d(rotation=target_rotation, translation=target_translation)
def _compute_reach_target(self, state):
xy_block = state["block_translation"]
xy_target = state["target_translation"]
xy_block_to_target = xy_target - xy_block
xy_dir_block_to_target = (xy_block_to_target) / np.linalg.norm(
xy_block_to_target
)
self.reach_target_translation = xy_block + -1 * xy_dir_block_to_target * 0.05
def _compute_state(self):
effector_pose = self._robot.forward_kinematics()
def _get_block_pose(idx):
block_position_and_orientation = (
self._pybullet_client.getBasePositionAndOrientation(
self._block_ids[idx]
)
)
block_pose = Pose3d(
rotation=transform.Rotation.from_quat(
block_position_and_orientation[1]
),
translation=block_position_and_orientation[0],
)
return block_pose
block_poses = [_get_block_pose(i) for i in range(len(self._block_ids))]
def _yaw_from_pose(pose):
return np.array([pose.rotation.as_euler("xyz", degrees=False)[-1]])
obs = collections.OrderedDict(
block_translation=block_poses[0].translation[0:2],
block_orientation=_yaw_from_pose(block_poses[0]),
block2_translation=block_poses[1].translation[0:2],
block2_orientation=_yaw_from_pose(block_poses[1]),
effector_translation=effector_pose.translation[0:2],
effector_target_translation=self._target_effector_pose.translation[0:2],
target_translation=self._target_poses[0].translation[0:2],
target_orientation=_yaw_from_pose(self._target_poses[0]),
target2_translation=self._target_poses[1].translation[0:2],
target2_orientation=_yaw_from_pose(self._target_poses[1]),
)
for i in range(2):
new_distance = np.linalg.norm(
block_poses[i].translation[0:2]
) # + np.linalg.norm(_yaw_from_pose(block_poses[i]))
if self._init_distance[i] == -1:
self._init_distance[i] = new_distance
else:
if self._init_distance[i] != 100:
if np.abs(new_distance - self._init_distance[i]) > 1e-3:
logger.info(f"Block {i} moved on step {self._step_num}")
self.moved += 1
self._init_distance[i] = 100
self._step_num += 1
return obs
def step(self, action):
self._step_robot_and_sim(action)
state = self._compute_state()
done = False
reward = self._get_reward(state)
if reward >= 0.5:
# Terminate the episode if both blocks are close enough to the targets.
done = True
return state, reward, done, {}
def _get_reward(self, state):
# Reward is 1. if both blocks are inside targets, but not the same target.
targets = ["target", "target2"]
def _block_target_dist(block, target):
return np.linalg.norm(
state["%s_translation" % block] - state["%s_translation" % target]
)
def _closest_target(block):
# Distances to all targets.
dists = [_block_target_dist(block, t) for t in targets]
# Which is closest.
closest_target = targets[np.argmin(dists)]
closest_dist = np.min(dists)
# Is it in the closest target?
in_target = closest_dist < self.goal_dist_tolerance
return closest_target, in_target
blocks = ["block", "block2"]
reward = 0.0
for t_i, t in enumerate(targets):
for b_i, b in enumerate(blocks):
if self._in_target[t_i][b_i] == -1:
dist = _block_target_dist(b, t)
if dist < self.goal_dist_tolerance:
self._in_target[t_i][b_i] = 0
logger.info(
f"Block {b_i} entered target {t_i} on step {self._step_num}"
)
self.entered += 1
reward += 0.49
b0_closest_target, b0_in_target = _closest_target("block")
b1_closest_target, b1_in_target = _closest_target("block2")
# reward = 0.0
if b0_in_target and b1_in_target and (b0_closest_target != b1_closest_target):
reward = 0.51
return reward
def _compute_goal_distance(self, state):
blocks = ["block", "block2"]
def _target_block_dist(target, block):
return np.linalg.norm(
state["%s_translation" % block] - state["%s_translation" % target]
)
def _closest_block_dist(target):
dists = [_target_block_dist(target, b) for b in blocks]
closest_dist = np.min(dists)
return closest_dist
t0_closest_dist = _closest_block_dist("target")
t1_closest_dist = _closest_block_dist("target2")
return np.mean([t0_closest_dist, t1_closest_dist])
@property
def succeeded(self):
state = self._compute_state()
reward = self._get_reward(state)
if reward >= 0.5:
return True
return False
def _create_observation_space(self, image_size):
pi2 = math.pi * 2
obs_dict = collections.OrderedDict(
block_translation=spaces.Box(low=-5, high=5, shape=(2,)), # x,y
block_orientation=spaces.Box(low=-pi2, high=pi2, shape=(1,)), # phi
block2_translation=spaces.Box(low=-5, high=5, shape=(2,)), # x,y
block2_orientation=spaces.Box(low=-pi2, high=pi2, shape=(1,)), # phi
effector_translation=spaces.Box(
low=block_pushing.WORKSPACE_BOUNDS[0] - 0.1,
high=block_pushing.WORKSPACE_BOUNDS[1] + 0.1,
), # x,y
effector_target_translation=spaces.Box(
low=block_pushing.WORKSPACE_BOUNDS[0] - 0.1,
high=block_pushing.WORKSPACE_BOUNDS[1] + 0.1,
), # x,y
target_translation=spaces.Box(low=-5, high=5, shape=(2,)), # x,y
target_orientation=spaces.Box(
low=-pi2,
high=pi2,
shape=(1,),
), # theta
target2_translation=spaces.Box(low=-5, high=5, shape=(2,)), # x,y
target2_orientation=spaces.Box(
low=-pi2,
high=pi2,
shape=(1,),
), # theta
)
if image_size is not None:
obs_dict["rgb"] = spaces.Box(
low=0, high=255, shape=(image_size[0], image_size[1], 3), dtype=np.uint8
)
return spaces.Dict(obs_dict)
def get_pybullet_state(self):
"""Save pybullet state of the scene.
Returns:
dict containing 'robots', 'robot_end_effectors', 'targets', 'objects',
each containing a list of ObjState.
"""
state: Dict[str, List[ObjState]] = {}
state["robots"] = [
XarmState.get_bullet_state(
self._pybullet_client,
self.robot.xarm,
target_effector_pose=self._target_effector_pose,
goal_translation=None,
)
]
state["robot_end_effectors"] = []
if self.robot.end_effector:
state["robot_end_effectors"].append(
ObjState.get_bullet_state(
self._pybullet_client, self.robot.end_effector
)
)
state["targets"] = []
if self._target_ids:
for target_id in self._target_ids:
state["targets"].append(
ObjState.get_bullet_state(self._pybullet_client, target_id)
)
state["objects"] = []
for obj_id in self.get_obj_ids():
state["objects"].append(
ObjState.get_bullet_state(self._pybullet_client, obj_id)
)
return state
def set_pybullet_state(self, state):
"""Restore pyullet state.
WARNING: py_environment wrapper assumes environments aren't reset in their
constructor and will often reset the environment unintentionally. It is
always recommeneded that you call env.reset on the tfagents wrapper before
playback (replaying pybullet_state).
Args:
state: dict containing 'robots', 'robot_end_effectors', 'targets',
'objects', each containing a list of ObjState.
"""
assert isinstance(state["robots"][0], XarmState)
xarm_state: XarmState = state["robots"][0]
xarm_state.set_bullet_state(self._pybullet_client, self.robot.xarm)
self._set_robot_target_effector_pose(xarm_state.target_effector_pose)
def _set_state_safe(obj_state, obj_id):
if obj_state is not None:
assert obj_id is not None, "Cannot set state for missing object."
obj_state.set_bullet_state(self._pybullet_client, obj_id)
else:
assert obj_id is None, f"No state found for obj_id {obj_id}"
robot_end_effectors = state["robot_end_effectors"]
_set_state_safe(
None if not robot_end_effectors else robot_end_effectors[0],
self.robot.end_effector,
)
for target_state, target_id in zip(state["targets"], self._target_ids):
_set_state_safe(target_state, target_id)
obj_ids = self.get_obj_ids()
assert len(state["objects"]) == len(obj_ids), "State length mismatch"
for obj_state, obj_id in zip(state["objects"], obj_ids):
_set_state_safe(obj_state, obj_id)
self.reset(reset_poses=False)
class BlockPushMultimodalMultiview(BlockPushMultimodal):
def __init__(self, id=None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.observation_space = spaces.Box(
low=0, high=1, shape=(2, 3, self._image_size[0], self._image_size[1])
)
self._step = 0
def _get_obs(self):
# render to VCHW shape
view0 = self._render_camera(self._image_size, view=0)
view1 = self._render_camera(self._image_size, view=1)
obs = np.stack([view0, view1], axis=0) # VHWC
return einops.rearrange(obs, "V H W C -> V C H W")
def step(self, action):
action = action * 0.03
self._step_robot_and_sim(action)
state = self._compute_state()
reward = self._get_reward(state)
# Terminate the episode if both blocks are close enough to the targets.
obs = self._get_obs()
image = einops.rearrange(obs, "V C H W -> H (V W) C")
obs = obs / 255.0
self._step += 1
done = (reward >= 0.5) or (self._step >= 300)
return (
obs,
reward,
done,
{
"state": state,
"image": image,
"all_completions_ids": [],
"moved": self.moved,
"entered": self.entered,
},
)
def reset(self, reset_poses=True, *args, **kwargs):
print("resetting env")
self._step = 0
state = super().reset(reset_poses=reset_poses)
obs = self._get_obs()
obs = obs / 255.0
return obs
def set_state(self, state: collections.OrderedDict):
robot_t = np.array(
[*state["effector_translation"], block_pushing.EFFECTOR_HEIGHT]
)
robot_r = transform.Rotation.from_rotvec([0, np.pi, 0])
robot_pose = Pose3d(rotation=robot_r, translation=robot_t)
self._set_robot_target_effector_pose(robot_pose)
self.step_simulation_to_stabilize()
block_t = [*state["block_translation"], 0]
block_r = transform.Rotation.from_rotvec([0, 0, state["block_orientation"]])
self._pybullet_client.resetBasePositionAndOrientation(
self._block_ids[0],
block_t,
block_r.as_quat().tolist(),
)
block2_t = [*state["block2_translation"], 0]
block2_r = transform.Rotation.from_rotvec([0, 0, state["block2_orientation"]])
self._pybullet_client.resetBasePositionAndOrientation(
self._block_ids[1],
block2_t,
block2_r.as_quat().tolist(),
)
target_t = [*state["target_translation"], 0.02]
target_r = transform.Rotation.from_rotvec([0, 0, state["target_orientation"]])
self._pybullet_client.resetBasePositionAndOrientation(
self._target_ids[0],
target_t,
target_r.as_quat().tolist(),
)
target2_t = [*state["target2_translation"], 0.02]
target2_r = transform.Rotation.from_rotvec([0, 0, state["target2_orientation"]])
self._pybullet_client.resetBasePositionAndOrientation(
self._target_ids[1],
target2_t,
target2_r.as_quat().tolist(),
)
self.step_simulation_to_stabilize()
class BlockPushHorizontalMultimodal(BlockPushMultimodal):
def _reset_object_poses(self, workspace_center_x, workspace_center_y):
# Reset block poses.
self._reset_block_poses(workspace_center_y)
# Reset target poses.
self._reset_target_poses(workspace_center_y)
def _reset_block_poses(self, workspace_center_y):
"""Resets block poses."""
# Helper for choosing random block position.
def _reset_block_pose(idx, add=0.0, avoid=None):
def _get_random_translation():
block_x = 0.35 + 0.5 * self._rng.uniform(
low=-RANDOM_X_SHIFT, high=RANDOM_X_SHIFT
)
block_y = (
workspace_center_y
+ add
+ 0.5 * self._rng.uniform(low=-RANDOM_Y_SHIFT, high=RANDOM_Y_SHIFT)
)
block_translation = np.array([block_x, block_y, 0])
return block_translation
if avoid is None:
block_translation = _get_random_translation()
else:
# Reject targets too close to `avoid`.
for _ in range(NUM_RESET_ATTEMPTS):
block_translation = _get_random_translation()
dist = np.linalg.norm(block_translation[0] - avoid[0])
# print('block inner try_idx %d, dist %.3f' % (try_idx, dist))
if dist > MIN_BLOCK_DIST:
break
block_sampled_angle = self._rng.uniform(math.pi)
block_rotation = transform.Rotation.from_rotvec([0, 0, block_sampled_angle])
self._pybullet_client.resetBasePositionAndOrientation(
self._block_ids[idx],
block_translation.tolist(),
block_rotation.as_quat().tolist(),
)
return block_translation
# Reject targets too close to `avoid`.
for _ in range(NUM_RESET_ATTEMPTS):
# Reset first block.
add = 0.2 * np.random.choice([-1, 1])
b0_translation = _reset_block_pose(0, add=add)
# Reset second block away from first block.
b1_translation = _reset_block_pose(1, add=-add, avoid=b0_translation)
dist = np.linalg.norm(b0_translation[0] - b1_translation[0])
if dist > MIN_BLOCK_DIST:
break
else:
raise ValueError("could not find matching block")
assert dist > MIN_BLOCK_DIST
def _reset_target_poses(self, workspace_center_y):
"""Resets target poses."""
def _reset_target_pose(idx, add=0.0, avoid=None):
def _get_random_translation():
# Choose x,y randomly.
target_x = 0.5 + self._rng.uniform(
low=-0.05 * RANDOM_X_SHIFT, high=0.05 * RANDOM_X_SHIFT
)
target_y = (
workspace_center_y
+ add
+ self._rng.uniform(
low=-0.05 * RANDOM_Y_SHIFT, high=0.05 * RANDOM_Y_SHIFT
)
)
target_translation = np.array([target_x, target_y, 0.020])
return target_translation
if avoid is None:
target_translation = _get_random_translation()
else:
# Reject targets too close to `avoid`.
for _ in range(NUM_RESET_ATTEMPTS):
target_translation = _get_random_translation()
dist = np.linalg.norm(target_translation[0] - avoid[0])
# print('target inner try_idx %d, dist %.3f' % (try_idx, dist))
if dist > MIN_TARGET_DIST:
break
target_sampled_angle = math.pi + self._rng.uniform(
low=-math.pi / 30, high=math.pi / 30
)
target_rotation = transform.Rotation.from_rotvec(
[0, 0, target_sampled_angle]
)
self._pybullet_client.resetBasePositionAndOrientation(
self._target_ids[idx],
target_translation.tolist(),
target_rotation.as_quat().tolist(),
)
self._target_poses[idx] = Pose3d(
rotation=target_rotation, translation=target_translation
)
if self._target_poses is None:
self._target_poses = [None for _ in range(len(self._target_ids))]
for _ in range(NUM_RESET_ATTEMPTS):
# Choose the first target.
add = 0.2 * np.random.choice([-1, 1])
# Randomly flip the location of the targets.
_reset_target_pose(0, add=add)
_reset_target_pose(1, add=-add, avoid=self._target_poses[0].translation)
dist = np.linalg.norm(
self._target_poses[0].translation[0]
- self._target_poses[1].translation[0]
)
break
# if dist > MIN_TARGET_DIST:
# break
else:
raise ValueError("could not find matching target")
# assert dist > MIN_TARGET_DIST
if "BlockPushMultimodal-v0" in registration.registry.env_specs:
del registration.registry["BlockPushMultimodal-v0"]
registration.register(
id="BlockPushMultimodal-v0", entry_point=BlockPushMultimodal, max_episode_steps=350
)
registration.register(
id="BlockPushMultimodalFlipped-v0",
entry_point=BlockPushHorizontalMultimodal,
max_episode_steps=25,
)
registration.register(
id="SharedBlockPushMultimodal-v0",
entry_point=BlockPushMultimodal,
kwargs=dict(shared_memory=True),
max_episode_steps=350,
)
registration.register(
id="BlockPushMultimodalRgb-v0",
entry_point=BlockPushMultimodal,
max_episode_steps=350,
kwargs=dict(image_size=(block_pushing.IMAGE_HEIGHT, block_pushing.IMAGE_WIDTH)),
)
registration.register(
id="BlockPushMultimodalMultiview-v0",
entry_point=BlockPushMultimodalMultiview,
max_episode_steps=350,
kwargs=dict(image_size=(block_pushing.IMAGE_HEIGHT, block_pushing.IMAGE_WIDTH)),
)
|