File size: 3,215 Bytes
393d3de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# coding=utf-8
# Copyright 2022 The Reach ML Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Metrics for the blocks environment."""

from typing import Optional, Text

import numpy as np

from tf_agents.metrics import py_metrics
from tf_agents.typing import types
from tf_agents.utils import nest_utils
from tf_agents.utils import numpy_storage


class AverageSuccessMetric(py_metrics.StreamingMetric):
    """Computes the average success of the environment."""

    def __init__(
        self, env, name="AverageSuccessMetric", buffer_size=10, batch_size=None
    ):
        """Creates an AverageReturnMetric."""
        self._np_state = numpy_storage.NumpyState()
        self._env = env
        # Set a dummy value on self._np_state so it gets included in
        # the first checkpoint (before metric is first called).
        self._np_state.success = np.float64(0)
        super(AverageSuccessMetric, self).__init__(
            name, buffer_size=buffer_size, batch_size=batch_size
        )

    def _reset(self, batch_size):
        """Resets stat gathering variables."""
        self._np_state.success = np.zeros(shape=(batch_size,), dtype=np.float64)

    def _batched_call(self, trajectory):
        """Processes the trajectory to update the metric.

        Args:
          trajectory: a tf_agents.trajectory.Trajectory.
        """
        success = self._np_state.success

        is_first = np.where(trajectory.is_first())
        success[is_first] = 0

        success += self._env.succeeded

        is_last = np.where(trajectory.is_last())
        self.add_to_buffer(success[is_last])


class AverageFinalGoalDistance(py_metrics.StreamingMetric):
    """Computes the average success of the environment."""

    def __init__(
        self, env, name="AverageFinalGoalDistance", buffer_size=10, batch_size=None
    ):
        """Creates an AverageReturnMetric."""
        self._env = env
        super(AverageFinalGoalDistance, self).__init__(
            name, buffer_size=buffer_size, batch_size=batch_size
        )

    def _reset(self, batch_size):
        """Resets stat gathering variables."""
        pass

    def _batched_call(self, trajectory):
        """Processes the trajectory to update the metric.

        Args:
          trajectory: a tf_agents.trajectory.Trajectory.
        """
        lasts = trajectory.is_last()
        if np.any(lasts):
            is_last = np.where(lasts)
            goal_distance = np.asarray(self._env.goal_distance, np.float32)

            if goal_distance.shape is ():  # pylint: disable=literal-comparison
                goal_distance = nest_utils.batch_nested_array(goal_distance)

            self.add_to_buffer(goal_distance[is_last])