File size: 7,079 Bytes
393d3de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# coding=utf-8
# Copyright 2022 The Reach ML Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Oracle for multimodal pushing task."""
import random

import envs.block_pushing.oracles.oriented_push_oracle as oriented_push_oracle_module
import numpy as np
from tf_agents.trajectories import policy_step
from tf_agents.trajectories import time_step as ts
from tf_agents.typing import types

# Only used for debug visualization.
import pybullet  # pylint: disable=unused-import


class MultimodalOrientedPushOracle(oriented_push_oracle_module.OrientedPushOracle):
    """Oracle for multimodal pushing task."""

    def __init__(self, env, goal_dist_tolerance=0.04, action_noise_std=0.0):
        super(MultimodalOrientedPushOracle, self).__init__(env)
        self._goal_dist_tolerance = goal_dist_tolerance
        self._action_noise_std = action_noise_std

    def reset(self):
        self.origin = None
        self.first_preblock = None
        self.phase = "move_to_pre_block"

    def _get_move_to_preblock(self, xy_pre_block, xy_ee):
        max_step_velocity = 0.3
        # Go 5 cm away from the block, on the line between the block and target.
        xy_delta_to_preblock = xy_pre_block - xy_ee
        diff = np.linalg.norm(xy_delta_to_preblock)
        if diff < 0.001:
            self.phase = "move_to_block"
            if self.first_preblock is None:
                self.first_preblock = np.copy(xy_pre_block)
        xy_delta = xy_delta_to_preblock
        return xy_delta, max_step_velocity

    def _get_action_for_block_target(self, time_step, block="block", target="target"):
        # Specifying this as velocity makes it independent of control frequency.
        max_step_velocity = 0.35

        info = self._get_action_info(time_step, block, target)

        if self.origin is None:
            self.origin = np.copy(info.xy_ee)

        if self.phase == "move_to_pre_block":
            xy_delta, max_step_velocity = self._get_move_to_preblock(
                info.xy_pre_block, info.xy_ee
            )

        if self.phase == "return_to_first_preblock":
            max_step_velocity = 0.3
            if self.first_preblock is None:
                self.first_preblock = self.origin
            # Return to the first preblock.
            xy_delta_to_origin = self.first_preblock - info.xy_ee
            diff = np.linalg.norm(xy_delta_to_origin)
            if diff < 0.001:
                self.phase = "return_to_origin"
            xy_delta = xy_delta_to_origin

        if self.phase == "return_to_origin":
            max_step_velocity = 0.3
            # Go 5 cm away from the block, on the line between the block and target.
            xy_delta_to_origin = self.origin - info.xy_ee
            diff = np.linalg.norm(xy_delta_to_origin)
            if diff < 0.001:
                self.phase = "move_to_pre_block"
            xy_delta = xy_delta_to_origin

        if self.phase == "move_to_block":
            xy_delta = self._get_move_to_block(
                info.xy_delta_to_nexttoblock,
                info.theta_threshold_to_orient,
                info.theta_error,
            )

        if self.phase == "push_block":
            xy_delta = self._get_push_block(
                info.theta_error,
                info.theta_threshold_to_orient,
                info.xy_delta_to_touchingblock,
            )

        orient_circle_diameter = 0.025

        if self.phase == "orient_block_left" or self.phase == "orient_block_right":
            max_step_velocity = 0.15

        if self.phase == "orient_block_left":
            xy_delta = self._get_orient_block_left(
                info.xy_dir_block_to_ee,
                orient_circle_diameter,
                info.xy_block,
                info.xy_ee,
                info.theta_error,
                info.theta_threshold_flat_enough,
            )

        if self.phase == "orient_block_right":
            xy_delta = self._get_orient_block_right(
                info.xy_dir_block_to_ee,
                orient_circle_diameter,
                info.xy_block,
                info.xy_ee,
                info.theta_error,
                info.theta_threshold_flat_enough,
            )

        if self._action_noise_std != 0.0:
            xy_delta += self._np_random_state.randn(2) * self._action_noise_std

        max_step_distance = max_step_velocity * (1 / self._env.get_control_frequency())
        length = np.linalg.norm(xy_delta)
        if length > max_step_distance:
            xy_direction = xy_delta / length
            xy_delta = xy_direction * max_step_distance
        return xy_delta

    def _choose_goal_order(self):
        """Chooses block->target order for multimodal pushing."""
        # Define all possible ((first_block, first_target),
        # (second_block, second_target)).
        possible_orders = [
            (("block", "target"), ("block2", "target2")),
            (("block", "target2"), ("block2", "target")),
            (("block2", "target"), ("block", "target2")),
            (("block2", "target2"), ("block", "target")),
        ]
        return random.choice(possible_orders)

    def _action(self, time_step, policy_state):
        if time_step.is_first():
            self.reset()
            (
                (self._first_block, self._first_target),
                (self._second_block, self._second_target),
            ) = self._choose_goal_order()
            self._current_block, self._current_target = (
                self._first_block,
                self._first_target,
            )
            self._has_switched = False

        def _block_target_dist(block, target):
            dist = np.linalg.norm(
                time_step.observation["%s_translation" % block]
                - time_step.observation["%s_translation" % target]
            )
            return dist

        if (
            _block_target_dist(self._first_block, self._first_target)
            < self._goal_dist_tolerance
            and not self._has_switched
        ):
            # If first block has been pushed to first target, switch to second block.
            self._current_block, self._current_target = (
                self._second_block,
                self._second_target,
            )
            self._has_switched = True
            self.phase = "return_to_first_preblock"

        xy_delta = self._get_action_for_block_target(
            time_step, block=self._current_block, target=self._current_target
        )

        return policy_step.PolicyStep(action=np.asarray(xy_delta, dtype=np.float32))