File size: 3,860 Bytes
393d3de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import utils
import torch
import einops

import numpy as np

from workspaces import base
from utils import get_split_idx

from accelerate import Accelerator

accelerator = Accelerator()


def calc_state_dist(a, b):
    result = {}
    result["total"] = ((a - b) ** 2).mean()
    return result


def mean_dicts(dicts):
    result = {}
    for k in dicts[0].keys():
        result[k] = np.mean([x[k] for x in dicts])
    return result


class YourWorkspace(base.Workspace):
    def __init__(self, cfg, work_dir):
        super().__init__(cfg, work_dir)

    def run_offline_eval(self):
        train_idx, val_idx = get_split_idx(
            len(self.dataset),
            self.cfg.seed,
            train_fraction=self.cfg.train_fraction,
        )
        embeddings = utils.inference.embed_trajectory_dataset(
            self.encoder, self.dataset
        )
        embeddings = [
            einops.rearrange(x, "T V E -> T (V E)") for x in embeddings
        ]  # flatten views
        if self.accelerator.is_main_process:
            # get all states and actions from the dataset, and do linear probe from embedding to state / action
            states = []
            actions = []
            for i in range(len(self.dataset)):
                T = self.dataset.get_seq_length(i)
                states.append(self.dataset.states[i, :T])
                actions.append(self.dataset.actions[i, :T])
            embd_state_linear_probe_results = (
                utils.inference.linear_probe_with_trajectory_split(
                    embeddings,
                    states,
                    train_idx,
                    val_idx,
                )
            )
            # add prefix to keys
            embd_state_linear_probe_results = {
                f"embd_state_{k}": v for k, v in embd_state_linear_probe_results.items()
            }
            embd_action_linear_probe_results = (
                utils.inference.linear_probe_with_trajectory_split(
                    embeddings,
                    actions,
                    train_idx,
                    val_idx,
                )
            )
            embd_action_linear_probe_results = {
                f"embd_action_{k}": v
                for k, v in embd_action_linear_probe_results.items()
            }

            # do NN probe from embedding to state
            state_dists = []
            N = 200
            rng = np.random.default_rng(self.cfg.seed)
            for i in range(N):
                query_traj_idx = rng.choice(len(self.dataset))
                query_frame_idx = rng.choice(
                    range(10, self.dataset.get_seq_length(query_traj_idx))
                )
                query_embedding = embeddings[query_traj_idx][query_frame_idx]
                query_frame_state = self.dataset.states[query_traj_idx, query_frame_idx]

                pool_embeddings = torch.cat(
                    [x for i, x in enumerate(embeddings) if i != query_traj_idx]
                )
                pool_states = torch.cat(
                    [x for i, x in enumerate(states) if i != query_traj_idx]
                )
                _, nn_idx = utils.inference.batch_knn(
                    query_embedding.unsqueeze(0),
                    pool_embeddings,
                    metric=utils.inference.mse,
                    k=1,
                    batch_size=1,
                )
                closest_frame_state = pool_states[nn_idx[0, 0]]
                state_dist = calc_state_dist(query_frame_state, closest_frame_state)
                state_dists.append(state_dist)
            mean_state_dist = mean_dicts(state_dists)
            return {
                **embd_state_linear_probe_results,
                **embd_action_linear_probe_results,
                **mean_state_dist,
            }
        else:
            return None