Commander commited on
Commit
29d38ff
·
verified ·
1 Parent(s): d8afd14

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +371 -1
README.md CHANGED
@@ -3,4 +3,374 @@ license: mit
3
  pipeline_tag: text-to-speech
4
  tags:
5
  - jellybox
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  pipeline_tag: text-to-speech
4
  tags:
5
  - jellybox
6
+ ---
7
+ <div align="center">
8
+
9
+
10
+ <h1>GPT-SoVITS-WebUI</h1>
11
+ A Powerful Few-shot Voice Conversion and Text-to-Speech WebUI.<br><br>
12
+
13
+ [![madewithlove](https://img.shields.io/badge/made_with-%E2%9D%A4-red?style=for-the-badge&labelColor=orange)](https://github.com/RVC-Boss/GPT-SoVITS)
14
+
15
+ <a href="https://trendshift.io/repositories/7033" target="_blank"><img src="https://trendshift.io/api/badge/repositories/7033" alt="RVC-Boss%2FGPT-SoVITS | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
16
+
17
+ <!-- img src="https://counter.seku.su/cmoe?name=gptsovits&theme=r34" /><br> -->
18
+
19
+ [![Open In Colab](https://img.shields.io/badge/Colab-F9AB00?style=for-the-badge&logo=googlecolab&color=525252)](https://colab.research.google.com/github/RVC-Boss/GPT-SoVITS/blob/main/colab_webui.ipynb)
20
+ [![License](https://img.shields.io/badge/LICENSE-MIT-green.svg?style=for-the-badge)](https://github.com/RVC-Boss/GPT-SoVITS/blob/main/LICENSE)
21
+ [![Huggingface](https://img.shields.io/badge/🤗%20-online%20demo-yellow.svg?style=for-the-badge)](https://huggingface.co/spaces/lj1995/GPT-SoVITS-v2)
22
+ [![Discord](https://img.shields.io/discord/1198701940511617164?color=%23738ADB&label=Discord&style=for-the-badge)](https://discord.gg/dnrgs5GHfG)
23
+
24
+ **English** | [**中文简体**](./docs/cn/README.md) | [**日本語**](./docs/ja/README.md) | [**한국어**](./docs/ko/README.md) | [**Türkçe**](./docs/tr/README.md)
25
+
26
+ </div>
27
+
28
+ ---
29
+
30
+ ## Features:
31
+
32
+ 1. **Zero-shot TTS:** Input a 5-second vocal sample and experience instant text-to-speech conversion.
33
+
34
+ 2. **Few-shot TTS:** Fine-tune the model with just 1 minute of training data for improved voice similarity and realism.
35
+
36
+ 3. **Cross-lingual Support:** Inference in languages different from the training dataset, currently supporting English, Japanese, Korean, Cantonese and Chinese.
37
+
38
+ 4. **WebUI Tools:** Integrated tools include voice accompaniment separation, automatic training set segmentation, Chinese ASR, and text labeling, assisting beginners in creating training datasets and GPT/SoVITS models.
39
+
40
+ **Check out our [demo video](https://www.bilibili.com/video/BV12g4y1m7Uw) here!**
41
+
42
+ Unseen speakers few-shot fine-tuning demo:
43
+
44
+ https://github.com/RVC-Boss/GPT-SoVITS/assets/129054828/05bee1fa-bdd8-4d85-9350-80c060ab47fb
45
+
46
+ **User guide: [简体中文](https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e) | [English](https://rentry.co/GPT-SoVITS-guide#/)**
47
+
48
+ ## Installation
49
+
50
+ For users in China, you can [click here](https://www.codewithgpu.com/i/RVC-Boss/GPT-SoVITS/GPT-SoVITS-Official) to use AutoDL Cloud Docker to experience the full functionality online.
51
+
52
+ ### Tested Environments
53
+
54
+ - Python 3.9, PyTorch 2.0.1, CUDA 11
55
+ - Python 3.10.13, PyTorch 2.1.2, CUDA 12.3
56
+ - Python 3.9, PyTorch 2.2.2, macOS 14.4.1 (Apple silicon)
57
+ - Python 3.9, PyTorch 2.2.2, CPU devices
58
+
59
+ _Note: numba==0.56.4 requires py<3.11_
60
+
61
+ ### Windows
62
+
63
+ If you are a Windows user (tested with win>=10), you can [download the integrated package](https://huggingface.co/lj1995/GPT-SoVITS-windows-package/resolve/main/GPT-SoVITS-v3lora-20250228.7z?download=true) and double-click on _go-webui.bat_ to start GPT-SoVITS-WebUI.
64
+
65
+ **Users in China can [download the package here](https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e/dkxgpiy9zb96hob4#KTvnO).**
66
+
67
+ ### Linux
68
+
69
+ ```bash
70
+ conda create -n GPTSoVits python=3.9
71
+ conda activate GPTSoVits
72
+ bash install.sh
73
+ ```
74
+
75
+ ### macOS
76
+
77
+ **Note: The models trained with GPUs on Macs result in significantly lower quality compared to those trained on other devices, so we are temporarily using CPUs instead.**
78
+
79
+ 1. Install Xcode command-line tools by running `xcode-select --install`.
80
+ 2. Install FFmpeg by running `brew install ffmpeg`.
81
+ 3. Install the program by running the following commands:
82
+
83
+ ```bash
84
+ conda create -n GPTSoVits python=3.9
85
+ conda activate GPTSoVits
86
+ pip install -r requirements.txt
87
+ ```
88
+
89
+ ### Install Manually
90
+
91
+ #### Install FFmpeg
92
+
93
+ ##### Conda Users
94
+
95
+ ```bash
96
+ conda install ffmpeg
97
+ ```
98
+
99
+ ##### Ubuntu/Debian Users
100
+
101
+ ```bash
102
+ sudo apt install ffmpeg
103
+ sudo apt install libsox-dev
104
+ conda install -c conda-forge 'ffmpeg<7'
105
+ ```
106
+
107
+ ##### Windows Users
108
+
109
+ Download and place [ffmpeg.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe) and [ffprobe.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe) in the GPT-SoVITS root.
110
+
111
+ Install [Visual Studio 2017](https://aka.ms/vs/17/release/vc_redist.x86.exe) (Korean TTS Only)
112
+
113
+ ##### MacOS Users
114
+ ```bash
115
+ brew install ffmpeg
116
+ ```
117
+
118
+ #### Install Dependences
119
+
120
+ ```bash
121
+ pip install -r requirements.txt
122
+ ```
123
+
124
+ ### Using Docker
125
+
126
+ #### docker-compose.yaml configuration
127
+
128
+ 0. Regarding image tags: Due to rapid updates in the codebase and the slow process of packaging and testing images, please check [Docker Hub](https://hub.docker.com/r/breakstring/gpt-sovits) for the currently packaged latest images and select as per your situation, or alternatively, build locally using a Dockerfile according to your own needs.
129
+ 1. Environment Variables:
130
+ - is_half: Controls half-precision/double-precision. This is typically the cause if the content under the directories 4-cnhubert/5-wav32k is not generated correctly during the "SSL extracting" step. Adjust to True or False based on your actual situation.
131
+ 2. Volumes Configuration,The application's root directory inside the container is set to /workspace. The default docker-compose.yaml lists some practical examples for uploading/downloading content.
132
+ 3. shm_size: The default available memory for Docker Desktop on Windows is too small, which can cause abnormal operations. Adjust according to your own situation.
133
+ 4. Under the deploy section, GPU-related settings should be adjusted cautiously according to your system and actual circumstances.
134
+
135
+ #### Running with docker compose
136
+
137
+ ```
138
+ docker compose -f "docker-compose.yaml" up -d
139
+ ```
140
+
141
+ #### Running with docker command
142
+
143
+ As above, modify the corresponding parameters based on your actual situation, then run the following command:
144
+
145
+ ```
146
+ docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9880:9880 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:xxxxx
147
+ ```
148
+
149
+ ## Pretrained Models
150
+
151
+ **Users in China can [download all these models here](https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e/dkxgpiy9zb96hob4#nVNhX).**
152
+
153
+ 1. Download pretrained models from [GPT-SoVITS Models](https://huggingface.co/lj1995/GPT-SoVITS) and place them in `GPT_SoVITS/pretrained_models`.
154
+
155
+ 2. Download G2PW models from [G2PWModel_1.1.zip](https://paddlespeech.cdn.bcebos.com/Parakeet/released_models/g2p/G2PWModel_1.1.zip), unzip and rename to `G2PWModel`, and then place them in `GPT_SoVITS/text`.(Chinese TTS Only)
156
+
157
+ 3. For UVR5 (Vocals/Accompaniment Separation & Reverberation Removal, additionally), download models from [UVR5 Weights](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/uvr5_weights) and place them in `tools/uvr5/uvr5_weights`.
158
+
159
+ - If you want to use `bs_roformer` or `mel_band_roformer` models for UVR5, you can manually download the model and corresponding configuration file, and put them in `tools/uvr5/uvr5_weights`. **Rename the model file and configuration file, ensure that the model and configuration files have the same and corresponding names except for the suffix**. In addition, the model and configuration file names **must include `roformer`** in order to be recognized as models of the roformer class.
160
+
161
+ - The suggestion is to **directly specify the model type** in the model name and configuration file name, such as `mel_mand_roformer`, `bs_roformer`. If not specified, the features will be compared from the configuration file to determine which type of model it is. For example, the model `bs_roformer_ep_368_sdr_12.9628.ckpt` and its corresponding configuration file `bs_roformer_ep_368_sdr_12.9628.yaml` are a pair, `kim_mel_band_roformer.ckpt` and `kim_mel_band_roformer.yaml` are also a pair.
162
+
163
+ 4. For Chinese ASR (additionally), download models from [Damo ASR Model](https://modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/files), [Damo VAD Model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/files), and [Damo Punc Model](https://modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/files) and place them in `tools/asr/models`.
164
+
165
+ 5. For English or Japanese ASR (additionally), download models from [Faster Whisper Large V3](https://huggingface.co/Systran/faster-whisper-large-v3) and place them in `tools/asr/models`. Also, [other models](https://huggingface.co/Systran) may have the similar effect with smaller disk footprint.
166
+
167
+ ## Dataset Format
168
+
169
+ The TTS annotation .list file format:
170
+
171
+ ```
172
+ vocal_path|speaker_name|language|text
173
+ ```
174
+
175
+ Language dictionary:
176
+
177
+ - 'zh': Chinese
178
+ - 'ja': Japanese
179
+ - 'en': English
180
+ - 'ko': Korean
181
+ - 'yue': Cantonese
182
+
183
+ Example:
184
+
185
+ ```
186
+ D:\GPT-SoVITS\xxx/xxx.wav|xxx|en|I like playing Genshin.
187
+ ```
188
+
189
+ ## Finetune and inference
190
+
191
+ ### Open WebUI
192
+
193
+ #### Integrated Package Users
194
+
195
+ Double-click `go-webui.bat`or use `go-webui.ps1`
196
+ if you want to switch to V1,then double-click`go-webui-v1.bat` or use `go-webui-v1.ps1`
197
+
198
+ #### Others
199
+
200
+ ```bash
201
+ python webui.py <language(optional)>
202
+ ```
203
+
204
+ if you want to switch to V1,then
205
+
206
+ ```bash
207
+ python webui.py v1 <language(optional)>
208
+ ```
209
+ Or maunally switch version in WebUI
210
+
211
+ ### Finetune
212
+
213
+ #### Path Auto-filling is now supported
214
+
215
+ 1. Fill in the audio path
216
+ 2. Slice the audio into small chunks
217
+ 3. Denoise(optinal)
218
+ 4. ASR
219
+ 5. Proofreading ASR transcriptions
220
+ 6. Go to the next Tab, then finetune the model
221
+
222
+ ### Open Inference WebUI
223
+
224
+ #### Integrated Package Users
225
+
226
+ Double-click `go-webui-v2.bat` or use `go-webui-v2.ps1` ,then open the inference webui at `1-GPT-SoVITS-TTS/1C-inference`
227
+
228
+ #### Others
229
+
230
+ ```bash
231
+ python GPT_SoVITS/inference_webui.py <language(optional)>
232
+ ```
233
+ OR
234
+
235
+ ```bash
236
+ python webui.py
237
+ ```
238
+ then open the inference webui at `1-GPT-SoVITS-TTS/1C-inference`
239
+
240
+ ## V2 Release Notes
241
+
242
+ New Features:
243
+
244
+ 1. Support Korean and Cantonese
245
+
246
+ 2. An optimized text frontend
247
+
248
+ 3. Pre-trained model extended from 2k hours to 5k hours
249
+
250
+ 4. Improved synthesis quality for low-quality reference audio
251
+
252
+ [more details](https://github.com/RVC-Boss/GPT-SoVITS/wiki/GPT%E2%80%90SoVITS%E2%80%90v2%E2%80%90features-(%E6%96%B0%E7%89%B9%E6%80%A7))
253
+
254
+ Use v2 from v1 environment:
255
+
256
+ 1. `pip install -r requirements.txt` to update some packages
257
+
258
+ 2. Clone the latest codes from github.
259
+
260
+ 3. Download v2 pretrained models from [huggingface](https://huggingface.co/lj1995/GPT-SoVITS/tree/main/gsv-v2final-pretrained) and put them into `GPT_SoVITS\pretrained_models\gsv-v2final-pretrained`.
261
+
262
+ Chinese v2 additional: [G2PWModel_1.1.zip](https://paddlespeech.cdn.bcebos.com/Parakeet/released_models/g2p/G2PWModel_1.1.zip)(Download G2PW models, unzip and rename to `G2PWModel`, and then place them in `GPT_SoVITS/text`.
263
+
264
+ ## V3 Release Notes
265
+
266
+ New Features:
267
+
268
+ 1. The timbre similarity is higher, requiring less training data to approximate the target speaker (the timbre similarity is significantly improved using the base model directly without fine-tuning).
269
+
270
+ 2. GPT model is more stable, with fewer repetitions and omissions, and it is easier to generate speech with richer emotional expression.
271
+
272
+ [more details](https://github.com/RVC-Boss/GPT-SoVITS/wiki/GPT%E2%80%90SoVITS%E2%80%90v3%E2%80%90features-(%E6%96%B0%E7%89%B9%E6%80%A7))
273
+
274
+ Use v3 from v2 environment:
275
+
276
+ 1. `pip install -r requirements.txt` to update some packages
277
+
278
+ 2. Clone the latest codes from github.
279
+
280
+ 3. Download v3 pretrained models (s1v3.ckpt, s2Gv3.pth and models--nvidia--bigvgan_v2_24khz_100band_256x folder) from [huggingface](https://huggingface.co/lj1995/GPT-SoVITS/tree/main) and put them into `GPT_SoVITS\pretrained_models`.
281
+
282
+ additional: for Audio Super Resolution model, you can read [how to download](./tools/AP_BWE_main/24kto48k/readme.txt)
283
+
284
+
285
+ ## Todo List
286
+
287
+ - [x] **High Priority:**
288
+
289
+ - [x] Localization in Japanese and English.
290
+ - [x] User guide.
291
+ - [x] Japanese and English dataset fine tune training.
292
+
293
+ - [ ] **Features:**
294
+ - [x] Zero-shot voice conversion (5s) / few-shot voice conversion (1min).
295
+ - [x] TTS speaking speed control.
296
+ - [ ] ~~Enhanced TTS emotion control.~~ Maybe use pretrained finetuned preset GPT models for better emotion.
297
+ - [ ] Experiment with changing SoVITS token inputs to probability distribution of GPT vocabs (transformer latent).
298
+ - [x] Improve English and Japanese text frontend.
299
+ - [ ] Develop tiny and larger-sized TTS models.
300
+ - [x] Colab scripts.
301
+ - [x] Try expand training dataset (2k hours -> 10k hours).
302
+ - [x] better sovits base model (enhanced audio quality)
303
+ - [ ] model mix
304
+
305
+ ## (Additional) Method for running from the command line
306
+ Use the command line to open the WebUI for UVR5
307
+ ```
308
+ python tools/uvr5/webui.py "<infer_device>" <is_half> <webui_port_uvr5>
309
+ ```
310
+ <!-- If you can't open a browser, follow the format below for UVR processing,This is using mdxnet for audio processing
311
+ ```
312
+ python mdxnet.py --model --input_root --output_vocal --output_ins --agg_level --format --device --is_half_precision
313
+ ``` -->
314
+ This is how the audio segmentation of the dataset is done using the command line
315
+ ```
316
+ python audio_slicer.py \
317
+ --input_path "<path_to_original_audio_file_or_directory>" \
318
+ --output_root "<directory_where_subdivided_audio_clips_will_be_saved>" \
319
+ --threshold <volume_threshold> \
320
+ --min_length <minimum_duration_of_each_subclip> \
321
+ --min_interval <shortest_time_gap_between_adjacent_subclips>
322
+ --hop_size <step_size_for_computing_volume_curve>
323
+ ```
324
+ This is how dataset ASR processing is done using the command line(Only Chinese)
325
+ ```
326
+ python tools/asr/funasr_asr.py -i <input> -o <output>
327
+ ```
328
+ ASR processing is performed through Faster_Whisper(ASR marking except Chinese)
329
+
330
+ (No progress bars, GPU performance may cause time delays)
331
+ ```
332
+ python ./tools/asr/fasterwhisper_asr.py -i <input> -o <output> -l <language> -p <precision>
333
+ ```
334
+ A custom list save path is enabled
335
+
336
+ ## Credits
337
+
338
+ Special thanks to the following projects and contributors:
339
+
340
+ ### Theoretical Research
341
+ - [ar-vits](https://github.com/innnky/ar-vits)
342
+ - [SoundStorm](https://github.com/yangdongchao/SoundStorm/tree/master/soundstorm/s1/AR)
343
+ - [vits](https://github.com/jaywalnut310/vits)
344
+ - [TransferTTS](https://github.com/hcy71o/TransferTTS/blob/master/models.py#L556)
345
+ - [contentvec](https://github.com/auspicious3000/contentvec/)
346
+ - [hifi-gan](https://github.com/jik876/hifi-gan)
347
+ - [fish-speech](https://github.com/fishaudio/fish-speech/blob/main/tools/llama/generate.py#L41)
348
+ - [f5-TTS](https://github.com/SWivid/F5-TTS/blob/main/src/f5_tts/model/backbones/dit.py)
349
+ - [shortcut flow matching](https://github.com/kvfrans/shortcut-models/blob/main/targets_shortcut.py)
350
+ ### Pretrained Models
351
+ - [Chinese Speech Pretrain](https://github.com/TencentGameMate/chinese_speech_pretrain)
352
+ - [Chinese-Roberta-WWM-Ext-Large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large)
353
+ - [BigVGAN](https://github.com/NVIDIA/BigVGAN)
354
+ ### Text Frontend for Inference
355
+ - [paddlespeech zh_normalization](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/paddlespeech/t2s/frontend/zh_normalization)
356
+ - [split-lang](https://github.com/DoodleBears/split-lang)
357
+ - [g2pW](https://github.com/GitYCC/g2pW)
358
+ - [pypinyin-g2pW](https://github.com/mozillazg/pypinyin-g2pW)
359
+ - [paddlespeech g2pw](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/paddlespeech/t2s/frontend/g2pw)
360
+ ### WebUI Tools
361
+ - [ultimatevocalremovergui](https://github.com/Anjok07/ultimatevocalremovergui)
362
+ - [audio-slicer](https://github.com/openvpi/audio-slicer)
363
+ - [SubFix](https://github.com/cronrpc/SubFix)
364
+ - [FFmpeg](https://github.com/FFmpeg/FFmpeg)
365
+ - [gradio](https://github.com/gradio-app/gradio)
366
+ - [faster-whisper](https://github.com/SYSTRAN/faster-whisper)
367
+ - [FunASR](https://github.com/alibaba-damo-academy/FunASR)
368
+ - [AP-BWE](https://github.com/yxlu-0102/AP-BWE)
369
+
370
+ Thankful to @Naozumi520 for providing the Cantonese training set and for the guidance on Cantonese-related knowledge.
371
+
372
+ ## Thanks to all contributors for their efforts
373
+
374
+ <a href="https://github.com/RVC-Boss/GPT-SoVITS/graphs/contributors" target="_blank">
375
+ <img src="https://contrib.rocks/image?repo=RVC-Boss/GPT-SoVITS" />
376
+ </a>