File size: 28,253 Bytes
c62b96f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "AWB WER plots.ipynb",
"provenance": [],
"collapsed_sections": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "vK9KbVT8ClG0"
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"source": [
"MINS_DATA = \"\"\"\n",
"5\t0.057692307692307696\n",
"10\t0.057692307692307696\n",
"15\t0.05576923076923077\n",
"20\t0.046153846153846156\n",
"25\t0.038461538461538464\n",
"30\t0.046153846153846156\n",
"35\t0.03653846153846154\n",
"40\t0.03653846153846154\n",
"45\t0.025\n",
"50\t0.03653846153846154\n",
"55\t0.026923076923076925\n",
"60\t0.032692307692307694\n",
"\"\"\""
],
"metadata": {
"id": "xTj5ZZWmEDoB"
},
"execution_count": 2,
"outputs": []
},
{
"cell_type": "code",
"source": [
"mins = []\n",
"wer = []\n",
"for line in MINS_DATA.split(\"\\n\"):\n",
" if \"\\t\" in line:\n",
" parts = line.split(\"\\t\")\n",
" mins.append(int(parts[0]))\n",
" wer.append(float(parts[1]) * 100)"
],
"metadata": {
"id": "cbSr-TOTNy6m"
},
"execution_count": 3,
"outputs": []
},
{
"cell_type": "code",
"source": [
"pd.options.display.float_format = '{:,.2f}'.format\n",
"df = pd.DataFrame(data={\"Minutes\": mins, \"WER\": wer})"
],
"metadata": {
"id": "F6pLJCGFN5e6"
},
"execution_count": 4,
"outputs": []
},
{
"cell_type": "code",
"source": [
"df"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 425
},
"id": "saY52xevV9zo",
"outputId": "f3e8eb1c-b664-4949-c3df-b8dc9d5df5ac"
},
"execution_count": 5,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Minutes WER\n",
"0 5 5.77\n",
"1 10 5.77\n",
"2 15 5.58\n",
"3 20 4.62\n",
"4 25 3.85\n",
"5 30 4.62\n",
"6 35 3.65\n",
"7 40 3.65\n",
"8 45 2.50\n",
"9 50 3.65\n",
"10 55 2.69\n",
"11 60 3.27"
],
"text/html": [
"\n",
" <div id=\"df-9390132b-c2ff-4e3b-9528-b03b74f0357a\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Minutes</th>\n",
" <th>WER</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>5</td>\n",
" <td>5.77</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>10</td>\n",
" <td>5.77</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>15</td>\n",
" <td>5.58</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>20</td>\n",
" <td>4.62</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>25</td>\n",
" <td>3.85</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>30</td>\n",
" <td>4.62</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>35</td>\n",
" <td>3.65</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>40</td>\n",
" <td>3.65</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>45</td>\n",
" <td>2.50</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>50</td>\n",
" <td>3.65</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>55</td>\n",
" <td>2.69</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>60</td>\n",
" <td>3.27</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-9390132b-c2ff-4e3b-9528-b03b74f0357a')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-9390132b-c2ff-4e3b-9528-b03b74f0357a button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-9390132b-c2ff-4e3b-9528-b03b74f0357a');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
]
},
"metadata": {},
"execution_count": 5
}
]
},
{
"cell_type": "code",
"source": [
"import numpy as np\n",
"ax = plt.gca()\n",
"ax.set_xticks(np.arange(5, 125, 5))\n",
"ax.set_xticklabels(labels=mins, minor=True)\n",
"\n",
"df.plot(kind='line', x='Minutes', y='WER', ax=ax)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 297
},
"id": "yxMFzpL4N9q3",
"outputId": "c4b04593-2e33-458f-8752-44fc1ba23830"
},
"execution_count": 7,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f271c39dcd0>"
]
},
"metadata": {},
"execution_count": 7
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEGCAYAAAB1iW6ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3hVVdb48e9KJ50UQioJCb1DiBRBgmIDUccGdmccFZlx1Cmvju9PRmd833Gajr2/IzqCXREclJEgKpGQ0HsnhZJQQk9Ckv37414YiCk3yT23ZX2eJw/n3nvu2WuT3JWTvc/ZS4wxKKWU8n5+7g5AKaWUc2hCV0opH6EJXSmlfIQmdKWU8hGa0JVSykcEuKvhuLg4k56e7q7mlVLKKxUVFe03xsQ39prbEnp6ejqFhYXual4ppbySiOxq6jUdclFKKR+hCV0ppXyEJnSllPIRbhtDV0qptjh16hSlpaVUVVW5OxRLhYSEkJKSQmBgoMPv0YSulPIqpaWlREREkJ6ejoi4OxxLGGM4cOAApaWlZGRkOPw+HXJRSnmVqqoqYmNjfTaZA4gIsbGxrf4rRBO6Usrr+HIyP60tffS6IZdNe48yb/Vul7aZ0jmUSYMSCQ3yuv8upVQH4nUZamv5MZ7N2+qy9k4vF//7eeu5blgqt4zsRkZcmMvaV0p5lgceeIBu3bpx//33A3DJJZeQmprKa6+9BsAvf/lLkpOTeeSRR+jVq9eZ9z344IPceuutpKenExERgYjQuXNnZs6cSbdu3ZwSm9cl9IkDE5k4cKLL2jPGULTrEDPzdzEzfydvfLeDsT3juW1kN8b16oK/n+//6aeU+o/Ro0fz3nvvcf/991NfX8/+/fs5cuTImdeXLFnCU089RWZmJitXrmz0GHl5ecTFxTFjxgz+8Ic/8OqrrzolNh1Db4GIkJ0ewzNTh7Dk4fE8OKEnm/Ye4SdvFnLBn/N4+ettHDpe4+4wlVIuMmrUKPLz8wFYt24d/fv3JyIigkOHDlFdXc2GDRuIiYlx6FgjR46krKzMabF53Rm6O3WJCOG+C3swbVwmX67bx8z8nfzvvzbytwWbmTwoidtGpdM/OcrdYSrVYTz22TrW7z7S8o6t0DcpkhlX9Gvy9aSkJAICAiguLmbJkiVnknJ+fj5RUVEMGDCAoKAgtm3bxuDBg8+879lnn2XMmDHnHGv+/PlcddVVTotdE3obBPr72Yd+Etm49whv5e/io+VlvF9UypC0aG4bmc5lA7oSHODv7lCVUhYYNWoUS5YsYcmSJTz44IOUlZWxZMkSoqKiGD16NECzQy65ubkcPHiQ8PBwfv/73zstLk3o7dS7ayRPXD2A31zamw+LSnnr+13c/+5Kfj83iKk5adx4XhpJ0Z3cHaZSPqm5M2krjR49miVLlrBmzRr69+9Pamoqf/3rX4mMjOSOO+5o8f15eXlER0dz0003MWPGDP72t785JS4dQ3eSqE6B/Pj8DL568AJm/jiHIWnRPL9oK2P+lMc9bxWxZNt+zOlLZpRSXm3UqFHMnTuXmJgY/P39iYmJobKykvz8fEaNGuXQMQICAnj66aeZOXMmBw8edEpcmtCdzM9PGNszntduG87iX+dy55gMvt9xgBtfXcrFTy3mrfydHKuudXeYSql2GDBgAPv372fEiBHnPBcVFUVcXBzAmTH001/PPPPMD46TmJjI1KlTef75550Sl7jrrDE7O9t0lAIXVafq+GzVbmbm72JN2WHCgwO4Zmgyt4xMJ6tLuLvDU8qrbNiwgT59+rg7DJdorK8iUmSMyW5sfx1Dd4GQQH+uy07l2mEprCypZGb+LmYVlPBm/i5GZ8Vy68h0LuzdhQB//YNJKdV2mtBdSEQYktaZIWmdeWRiH95dVsI/v9/F3W8VkRQVwk0jujFleCqx4cHuDlUp5YX0lNBN4sKDmZ6bxeLf5PLSzcPIiA/jz19sYuT/LmTe6j3uDk8pj9YRLjBoSx81obtZgL8fl/bvyj/vHMGCB8aS2SWc//3XBmrr6t0dmlIeKSQkhAMHDvh0Uj+9HnpISEir3ufQkIuI7ASOAnVAbcMBeREZB3wK7LA/9ZEx5vFWRaLokRDBLyf05M6ZhXy2ejdXD0lxd0hKeZyUlBRKS0upqKhwdyiWOl2xqDVaM4aea4zZ38zr3xhjJrWqdfUD43t3oXfXCF7I28aVg5Lx08W/lDpHYGBgq6r4dCQ65OJh/PyEaeMy2VJ+jAUb9rk7HKWUF3E0oRvgSxEpEpG7mthnpIisEpF/iYh77sf1ERMHJJIWE8oLeVt9epxQKeVcjib0840xQ4HLgOkiMrbB68uBbsaYQcCzwCeNHURE7hKRQhEp9PXxr/YI8PfjngsyWVV6mCXbDrg7HKWUl3AooRtjyuz/lgMfAzkNXj9ijDlm3/4cCBSRuEaO84oxJtsYkx0fH9/u4H3ZNcOS6RIRzPMurM6klPJuLSZ0EQkTkYjT28DFwNoG+3QVe0VTEcmxH1dPLdshOMCfu8Z2Z8m2AywvPuTucJRSXsCRM/QE4FsRWQUUAPOMMfNF5B4Ruce+z7XAWvs+zwBTjA7+ttvUnDSiQwN5IW+bu0NRSnmBFi9bNMZsBwY18vxLZ20/Bzzn3NBUWHAAd4zK4Kl/b2bj3iP07hrp7pCUUh5ML1v0cLeN6kZYkD8vLtKzdKVU8zShe7jo0CBuGtGNz1btZteB4+4ORynlwTShe4E7z88gwM+Plxdvd3coSikPpgndC3SJDOG67BQ+KCxl35Eqd4ejlPJQmtC9xN1jM6kzhte+0bN0pVTjNKF7ibTYUCYPSuKfS4s5dLzG3eEopTyQJnQvMm1cJidq6vjHkp3uDkUp5YE0oXuRngkRTOibwD+W7ORYda27w1FKeRhN6F7m3nGZHD55illLi90dilLKw2hC9zJD0jozOiuWV7/ZTtWpOneHo5TyIJrQvdD0cVmUH63mw+Wl7g5FKeVBNKF7oZGZsQxOjealr7dpMWml1Bma0L2QiDA9N4uSgyeZu3qPu8NRSnkITehe6sLeXeiZEM4Li7ZSX68rFSulNKF7LT8/4d5xWWzed4x/azFppRSa0L3apIGJpMZ04vlF27SYtFJKE7o3O1NMuqSSfC0mrVSHpwndy10zNMVWTHqRFpNWqqPThO7lQgL9+emY7ny39QArtJi0Uh2aJnQfcON5aUR1CuQFLVOnVIemCd0HhAUHcPuodBas38emvUfdHY5Syk00ofuI20elExrkz4s6lq5Uh+VQQheRnSKyRkRWikhhI6+LiDwjIltFZLWIDHV+qKo5ncOCuOm8ND5bvYfiAyfcHY5Syg1ac4aea4wZbIzJbuS1y4Ae9q+7gBedEZxqnTvHdMdfhJcX61i6Uh2Rs4ZcrgRmGpvvgWgRSXTSsZWDEiJDuDY7hfcLSynXYtJKdTiOJnQDfCkiRSJyVyOvJwMlZz0utT93DhG5S0QKRaSwoqKi9dGqFt0zNpPa+npe+3aHu0NRSrmYown9fGPMUGxDK9NFZGxbGjPGvGKMyTbGZMfHx7flEKoFabGhXDEoibe/30XlCS0mrVRH4lBCN8aU2f8tBz4GchrsUgaknvU4xf6ccgMtJq1Ux9RiQheRMBGJOL0NXAysbbDbHOBW+9UuI4DDxhhdqNtNeneN5KI+tmLSx7WYtFIdhiNn6AnAtyKyCigA5hlj5ovIPSJyj32fz4HtwFbgVeBeS6JVDrs3N5PKE6eYVaDFpJXqKAJa2sEYsx0Y1MjzL521bYDpzg1NtcfQtM6MyozllcXbuWVkN4ID/N0dklLKYnqnqA+bnmsvJl2k0xlKdQSa0H3YqMxYBqVEaTFppToITeg+TES4NzeL4oMnmLdG56iV8nWa0H3chD4J9OgSzgt527SYtFI+ThO6j/PzE+7NzWTTvqMs3Fju7nCUUhbShN4BXDEwiZTOnXgub6sWk1bKh2lC7wBOF5NeWVJJ/nYtJq2Ur9KE3kFcOyyF+IhgXsjTpXWV8lWa0DuIkEB/7jw/g2+37mdlSaW7w1FKWUATegdy04huRIYE8EKelqlTyhdpQu9AwoMDuH10Bl+u38eWfVpMWilfowm9g7njTDFpHUtXytdoQu9gOocFcWNOGp+u2k3JQS0mrZQv0YTeAWkxaaV8kyb0DqhrVAjXDEvmPS0mrZRP0YTeQd09NpPaunpe12LSSvkMTegdVHpcGJMG2opJHzzue8Wk6+oNT8xbT+HOg+4ORSmX0YTegf1sfBZVtfX89ctN7g7F6d5dVsKr3+zgkY/X6iqTqsPQhN6B9UyI4NaR3XinoJi1ZYfdHY7THDpew5++2EhMWJCuMqk6FE3oHdz9F/UkNiyI//ep75zJ/uXLTRytqmXmj3N0lUnVoWhC7+CiOgXyX5f2ZkVxJR8uL3V3OO22tuww7xQUc+vIbvRPjtJVJlWH4nBCFxF/EVkhInMbee12EakQkZX2rzudG6ay0jVDUxiaFs2T8zdy+OQpd4fTZvX1hkc/XUtsWBAPTOgJ6CqTqmNpzRn6L4ANzbz+rjFmsP3rtXbGpVzIz094/Mr+HDhew1MLNrs7nDb7cHkpy4sreeiyPkSGBAK6yqTqWBxK6CKSAkwENFH7qP7JUdyYk8bM/J1s2HPE3eG02uGTp3hy/kaGpkXzoyHJ57ymq0yqjsLRM/Sngd8A9c3sc42IrBaRD0QktbEdROQuESkUkcKKiorWxqos9utLehHVKZAZc9Z53STi0//ezIHjNTx+ZX/8/OSc185eZXKzrjKpfFiLCV1EJgHlxpiiZnb7DEg3xgwEFgBvNraTMeYVY0y2MSY7Pj6+TQEr60SHBvHrS3pTsOMgc1btdnc4Dtu49wgz83dx03lp9E+OanSf06tMvqSrTCof5sgZ+mhgsojsBGYD40Xk7bN3MMYcMMZU2x++BgxzapTKZW4YnsqA5CiemLeBY9W17g6nRcYYHv10HZEhAfzq4l5N7qerTKqOoMWEbox52BiTYoxJB6YAC40xN5+9j4gknvVwMs1PnioP5u8nPHZlP8qPVvPsV1vcHU6L5qzaTcGOg/z6kt5EhwY1u6+uMql8XZuvQxeRx0Vksv3hfSKyTkRWAfcBtzsjOOUeQ9M6c312Cq9/u4Ot5cfcHU6TjlXX8j+fb2BgShQ3DG902uYcusqk8nWtSujGmEXGmEn27UeNMXPs2w8bY/oZYwYZY3KNMRutCFa5zm8u7U2nIH9+58ETpM9+tYV9R6p5bHI//BtMhDZFV5lUvkzvFFWNigsP5pcTevLt1v3MX7vX3eH8wNbyY7z+7Q6uz05hSFpnh9939iqTh094701USjVGE7pq0s0jutG7awS/n7uekzV17g7nDGMMv5uzjtAgf/7r0t6tfv+0cZkcr6njzfydTo9NKXfShK6aFODvx+NX9mf34Sqe96Cbcuav3cu3W/fzy4t7ERse3Or390mM5KI+XXjjux0c94IreZRylCZ01aycjBiuGpzEK4u3s3P/cXeHw8maOn4/dz29u0Zw03lpbT7OvblZVJ44xayCYidGp5R7aUJXLfrt5X0I9Bcen7ve3aHwwqKt7D5cxeNX9ifAv+0/vkPTOjOiewyvfrOd6lrPGU5Sqj00oasWdYkM4f6LerJwYzlfbdjntjh27j/Oy19v5+ohyeRkxLT7eNNzs9h3pJqPlpc5ITql3E8TunLI7aPTyeoSzmOfrafqlHvOaB+fu55Af+Hhy1o/EdqY87PiGJgSxUtfb6O2rrllipTyDprQlUMC/f14bHI/ig+e4JXF213e/lcb9rFwYzn3X9STLpEhTjmmiHDvuCx2HTjBvDV7nHJMpdxJE7py2OisOCYOSOT5vK0uXQ+l6lQdj322nqwu4dw+Ot2px764bwJZXcJ5cdE2j72BSilHaUJXrfLbiX3wE+EP81w3QfrK4u0UHzzBY5P7EdiOidDG+PkJ947LZONeLSatvJ8mdNUqydGd+Nn4LL5Yt4+vN1u/pn3JwRM8n7eViQMSGZ0VZ0kbVwxKIjlai0kr76cJXbXanWMySI8N5bE566iptXYy8Yl5G/AT4ZGJfSxrI9Dfj3su6M6K4kq+337QsnaUspomdNVqwQH+zJjcj+37j1u6yNXizRXMX7eXn43PIim6k2XtAFyXnUpceDAvLPKcO2KVai1N6KpNcnt14aI+CTy7cAt7Dp90+vFrauv53Zx1pMeGcueYDKcfv6GQQH/uHJPBN1v2s7pUi0kr76QJXbXZjCv6Ultv+J/Pnb9a8hvf7WD7/uPMmNyP4AB/px+/MTedl2YvJq0FMJR30oSu2iw1JpRpF2Ty2ard5G874LTj7j1cxTNfbeGiPgnk9uritOO2JCIkkNtHpTN/3V62aDFp5YU0oat2mTYuk5TOnZgxZy2nnHS35ROfb6C23jDjir5OOV5r3D46g06B/rz4tZ6lK++jCV21S0igP49O6svmfceYmb+r3cfL33aAz1btZtoFmaTGhDohwtaJCQtiak4an67UYtLK+2hCV+02oW8CF/SM5+kFmyk/2vZanafqbBOhKZ07MW1cphMjbJ2fjs3AT3DLEgdKtYcmdNVuIsKMK/pSVVvHH//V9gnSmfm72LTvKI9O6ktIoGsmQhuTGNWJa4am8G5hSbt+QSnlaprQlVN0jw/nzjHd+Wh5GYU7W39zTvnRKp5esJkLesYzoW+CBRG2zt0XaDFp5X0cTugi4i8iK0RkbiOvBYvIuyKyVUSWiki6M4NU3uHn47NIjArh0U/XUVffulvon/zXJqpq65hxRV9ExKIIHZcRF8bEgUn88/tiLSatvEZrztB/AWxo4rWfAIeMMVnAU8CT7Q1MeZ/QoAAemdiH9XuO8M5SxydIi3Yd5MPlpdw5pjvd48MtjLB17h2XybHqWmbm73R3KEo5xKGELiIpwETgtSZ2uRJ40779AXCheMJplnK5iQMSGZUZy5+/2MSBY9Ut7l9Xb/h/n6wjMSqEn4/PckGEjuuTGMn43rZi0idqtJi08nyOnqE/DfwGaOpC42SgBMAYUwscBmIb7iQid4lIoYgUVlRYv1Kfcj0R4bHJ/ThRU8dfvtzU4v7vFBSzfs8RHpnYh9CgABdE2DrTczM5dOIUswpK3B2KUi1qMaGLyCSg3BhT1N7GjDGvGGOyjTHZ8fHx7T2c8lA9EiK4fVQ6s5eVsKqk6XVRDh6v4S9fbGJUZiwTByS6MELHDesWw3kZMby6WItJK8/nyBn6aGCyiOwEZgPjReTtBvuUAakAIhIARAHOuxdceZ1fXNSDuPBgHp2zjvomJkj//MVGjlfX8tjkfh4xEdqU6blZ7D1SxcdaTFp5uBYTujHmYWNMijEmHZgCLDTG3NxgtznAbfbta+37aKWADiwiJJDfXt6bVSWVvF/0w+GKVSWVzF5Wwu2j0umREOGGCB03pkccA5JtxaRbe/WOUq7U5uvQReRxEZlsf/g6ECsiW4EHgYecEZzyblcNTmZ4emeenL/pnEv/6usNj85ZR2xYML+4qIcbI3SMiDA9N5OdB07wuRaTVh6sVQndGLPIGDPJvv2oMWaOfbvKGHOdMSbLGJNjjNF7ppV9grQ/lSdq+OuC/0yQvl9kG1v/7eW9iQgJdGOEjru4b1cy48N4XsvUKQ+md4oqS/VNiuSWEd14+/tdrNt9mMMnTvHk/E0MT+/M1UOS3R2ew/z8hGnjsti49yh5m7SYtPJMmtCV5R6c0Ivo0CBmfLqOvy7YROWJGn7n4ROhjblysL2Y9EI9S1eeSRO6slxUaCD/dWkvCncdYmb+Lm4e0Y1+SVHuDqvVAv39uPuC7iwvrmTpDi0mrTyPJnTlEtcNS2VwajSxYUE8OKGnu8Nps+uzU4kLD+L5PC0mrTyP592ap3ySn5/wzk/P43h1HdGhQe4Op81CAv35yfndeXL+RtaUHmZAivf9paF8l56hK5cJDQogPiLY3WG0280j0ogICeCFRXqWrjyLJnSlWikiJJDbRtqKSW8t12LSynNoQleqDe4YnU5wgB8vLtJbLpTn0ISuVBvEhgczNSeNT1aWaTFp5TE0oSvVRj8d0x0/gVe/0bN05Rk0oSvVRknRnfjRkBTeXVZCxdGWi3koZTVN6Eq1w90XdKemrp43vtNi0sr9NKEr1Q7d48O5fEAib+Xv4vBJLSat3EsTulLtdLqY9Fv5O90diurg9E5RpdqpX1IUub3iefWbHZRVnnRZu0PSOnN9dqrL2nOVyhM1/N93O5k2LpOQQH93h+NVNKEr5QQPTOjJtLeX89UG1yyte7Kmjg+LyrioTwIxYd67lEJj3vh2B88s3Epkp0B+cn6Gu8PxKprQlXKCgSnRfPfQeJe1t2nvUS55ejEfLS/lzjHdXdau1Wrr6nmvsBSAVxdv5+YRaQQH6Fm6o3QMXSkv1KtrBEPTonmnoNin1mZftKmCvUequOm8NC3M3Qaa0JXyUlNy0thecZxlOw+5OxSnmb2smPiIYH43uR8DkqN48ett1NbVuzssr6EJXSkvNWlgIhHBAcwqKHZ3KE6x5/BJFm4s57phKQT6+zE9N5NdB07w+dq97g7Na2hCV8pLhQYFcNWQZOat2UPliRp3h9Nu7xeWUm9gyvA04D+FuV/QwtwOazGhi0iIiBSIyCoRWScijzWyz+0iUiEiK+1fd1oTrlLqbFNyUqmprefjFd491lxXb3h3WQnnZ8WRFhsKaGHutnDkDL0aGG+MGQQMBi4VkRGN7PeuMWaw/es1p0aplGpUv6QoBqVEMbugxKvPYr/ZUkFZ5Umm5qSd87wW5m6dFhO6sTlmfxho/9L/WaU8xJScNDbtO8ry4kp3h9JmswqKiQ0LYkLfhHOe18LcrePQGLqI+IvISqAcWGCMWdrIbteIyGoR+UBEGr19TUTuEpFCESmsqKhoR9hKqdOuGJREWJA/s710crT8SBVfbSjn2mEpBAX8MCVpYW7HOZTQjTF1xpjBQAqQIyL9G+zyGZBujBkILADebOI4rxhjso0x2fHx8e2JWyllFx4cwOTBSXy2ejdHqrxvgbD3i0qprTfcMLzxZQxOF+b+Zst+Vpd6718hrtCqq1yMMZVAHnBpg+cPGGNOLwj9GjDMOeEppRwxNSeNqlP1fLpyt7tDaZV6+2ToiO4xdI8Pb3K/M4W587a5MDrv48hVLvEiEm3f7gRMADY22CfxrIeTgQ3ODFIp1bwByVH0TYxk1lLvunN0ybYDFB888YPJ0Ia0MLdjHDlDTwTyRGQ1sAzbGPpcEXlcRCbb97nPfknjKuA+4HZrwlVKNUZEmHpeGuv3HGFN2WF3h+OwWcuKiQ4N5JJ+XVvc947R6YQEamHu5jhylctqY8wQY8xAY0x/Y8zj9ucfNcbMsW8/bIzpZ4wZZIzJNcZsbP6oSilnu3JwEp0C/b3mztEDx6r5ct1efjQkxaFlcrUwd8v0TlGlfERkSCCTBiYyZ+VujlXXujucFn24vJRTdYapOY6v6a6FuZunCV0pHzIlJ43jNXV8tsqzJ0eNMcwqKGF4emd6JEQ4/L7ThblnLyuh/GiVhRF6J03oSvmQoWnR9EqI8Phhl++3H2TH/uNn1m1pjXvGZVJbV88b3+50fmBeThO6Uj5ERJiak8rq0sOs9eDJ0dnLiokMCWDiwMSWd24gIy6MywYk8vb3Wpi7IU3oSvmYq4ekEBzgx+xlnnmWfuh4Df9as5erhyS3uWaoFuZunCZ0pXxMVGggEwck8umK3Zyo8bzJ0Y9WlFFTV8/U81o/3HLa6cLcb3y30yP76C6a0JXyQVNy0jhaXcvc1XvcHco5bJOhxQxOjaZ318h2HWt6bhYHj9cwu6DESdF5P03oSvmg4emdyYwP87gFu4p2HWJr+TFubOHOUEdkp8eQkxHDK4u3U1PrPWXq5qzabdkVOprQlfJBtsnRNJYXV7Jpr+fcKv9OQTHhwQFMGtT6ydDGTM/NshWTXlHqlONZ7ZstFdw/ewXPfmXNypGa0JXyUT8amkKQv5/HXMJ4+MQp5q3ew5WDkwgNCnDKMcf2iKN/ciQvfb2dunrPXsOm5OAJfj5rBT26RPDQZb0taUMTulI+KiYsiEv6d+Wj5aVUnapzdzh8srKM6tr6Fhfiag0R4d5xWezYf5x/rfWs+YKzVZ2q4563i6irN7x8yzDCgp3zC60hTehK+bCpOakcqap1e7I7PRk6IDmK/slRTj32Jf260j0+jOfztnnkSpPGGH770RrW7znC36cMJj0uzLK2NKEr5cNGdo8lPTaUWUvdeyXIypJKNu49ypRWrNviKH8/YdoFmWzYc4RFmzyvEtqbS3by0Yoy7r+wJ+N7J7T8hnbQhK6UDxMRpuSkUbDzIFvLj7X8BovMLighNMifyYOSLDn+VUOSbcWk8zyrmPTS7Qf4w7wNXNQngZ+Pz7K8PU3oSvm4a4amEOAnbruE8WjVKeas2s0VA5OICAm0pI1Afz/uGtudol2HKPCQYtJ7Dp9k+jvLSYsJ5W83DMLPTyxvUxO6Uj4uPiKYi/sl8OHyUqprXT85OmfVbk6eqmvXnaGOuGG4vZj0IveXqauurWPa28s5WVPHy7cMI9KiX2QNaUJXqgOYmpPGoROn+GLdPpe3PaugmN5dIxiU4tzJ0IZCAv25Y3QGizdXuH1hst/NWcfKkkr+ct2gVi0P3F6a0JXqAEZnxpEa08nlwy5rSg+ztuwIN56Xhoj1Qw63jOxGRHAALyyy5sYdR8wqKGZWQQnTxmVy2QDn3EDlKE3oSnUAfn7ClOFpLNl2gJ37j7us3VnLigkJ9OPKwckuaS8yJJBbR3XjX2v3umUSeEXxIWZ8uo4xPeL41cW9XN6+JnSlOojrhqXg7yfMXuaaSxiPV9cyZ+VuJg5IIqqTa8aQAe4YnUFwgB8vfe3asfSKo9VMe3s5CVHBPDt1CP4umARtSBO6Uh1El8gQLuzdhQ+KSlyymNXc1bbapq2pGeoMceHBTBmexicryig95Jpi0qfq6pn+z+VUnqzh5ZuziQ4Nckm7DWlCV6oDmZqTxv5jNfx7g/WTo+8UlNCjSzjDunW2vK2G7hrbHYBXF7ummPQT8zZQsJ9mcD8AAA/KSURBVPMgT14zkL5J7VsWuD1aTOgiEiIiBSKySkTWichjjewTLCLvishWEVkqIulWBKuUap+xPeNJigqxfMGu9buPsKqkkik5rpkMbSgpuhNXD0lm9rIS9h+rtrStj1eU8o8lO/nx6AyXzRU0xZEz9GpgvDFmEDAYuFRERjTY5yfAIWNMFvAU8KRzw1RKOYO/n3D98FS+2bKfkoPWDUfMXlZMUIAfPxrivgR3z7hMaurqeePbHZa1sbbsMA99uIbzMmJ4+HJrVlBsjRYTurE5PV0caP9qeG/tlcCb9u0PgAvFHb+WlVItuj47FT+Bdy2aHD1ZU8fHK8q4rH9XOoe5ZywZIDM+nMv7J/JWvjXFpA8dr+Get4uICQvi+ZuGEujv/hFshyIQEX8RWQmUAwuMMUsb7JIMlAAYY2qBw0BsI8e5S0QKRaSwosLzFtFRqiNIiu7EuF5deK+whNo650+Ozluzh6NVtU5dJretpo3L5Gh1LW9/v8upx62rN9w3ewXlR6p58eZhxIUHO/X4beVQQjfG1BljBgMpQI6I9G9LY8aYV4wx2caY7Pj4+LYcQinlBFNz0ig/Ws3CjeVOP/bsgmK6x4VxXkaM04/dWv2ToxjXK57Xv93ByRrnLXvw5y828c2W/fz+qn4MTo122nHbq1V/IxhjKoE84NIGL5UBqQAiEgBEAQecEaBSyvlye8WTEBns9MnRzfuOUrjrEFNyUt0yGdqYM8Wklzmnr5+v2cNLX2/jxvPSuGG4+/8KOZsjV7nEi0i0fbsTMAHY2GC3OcBt9u1rgYXGk9awVEqdI8Dfj+uzU/l6cwVllSeddtzZBSUE+gvXDE1x2jHba3h6DMPTOzulmPTmfUf51furGJIWzYwr+jopQudx5Aw9EcgTkdXAMmxj6HNF5HERmWzf53UgVkS2Ag8CD1kTrlLKWa7PTsUA7zlpcrTqVB0frSjl4n5difWQMeXT7s3NYs/hKj5ZWdbmYxw+eYq73yoiNCiAl24eRnCAvxMjdI4WC9sZY1YDQxp5/tGztquA65wbmlLKSqkxoYzpEc97hSXcd2GPdt+q/sW6vVSeOMWNHjAZ2tC4nvH0TYzkpUXbuGZoSqv7Wl9vePDdlZQcPMGsu0aQEBliUaTt4/7rbJRSbnNjTip7Dlfx9eb2T46+s7SYtJhQRnb/wQVubiciTM/NYvv+48xfu7fV739m4Ra+2ljOo1f0ZXi6+yd7m6IJXakO7MI+CcSFBzOroH3DLtsrjrF0x0Gm5KS6pDJPW1zavyvd48J4vpVl6v69fh9P/3sL1wxN4ZYR3SyMsP00oSvVgQX6+3FddgoLN5az70hVm48ze1kJAX7CtcM8ZzK0IX8/4Z5xmazfc4RFmx27D2Z7xTEeeHcl/ZMjeeLq/h5z5U5TNKEr1cFNGZ5KXb3h/cK2naVX19bxQVEpF/VJoEuEZ44tn3bV4GSSokJ4Ia/lAhjHqmu5+60iAgP8eOnmYYQEet4kaEOa0JXq4LrFhjE6K5bZy0qor2/91cYL1u/j4PEaprh4mdy2CArw46dju7NsZ/PFpI0x/OaDVWyrOMZzU4eQ0jnUhVG2nSZ0pRRThqdReugk327d3+r3zi4oITm6E2N6eMfd31OGpxETFtRsmbqXvt7O52v28tBlvRmVFefC6NpHE7pSiov7JRATFtTqO0d3HTjOt1v3c8PwVLdU6GmLTkH+/OT8DBZtaryY9DdbKvjzFxuZNDCRn47p7oYI204TulKK4AB/rhmazIL1+6g46vj64e8uK8FPbDcpeZObR9iKSb+46NwydSUHT/DzWSvo0SWCP1070OMnQRvShK6UAmBKThq19YYPikod2v9UXT3vFZYyvncXukZ59mRoQ1GdArllZDc+X7uHbRW21cFP1tRx91tF1NcbXr5lGKFBLd536XE0oSulANv64edlxDB7WbFDk6NfbdjH/mPVHrFMblv8+PwMgvz9eGnRNowx/PbjNWzYe4S/TxlCelyYu8NrE03oSqkzpuaksevACb7f3vJiqbMKSugaGcIFPb1jMrQhWzHpVD5eUcYf52/k4xVlPHBRT3J7d3F3aG2mCV0pdcal/bsS1SmQd1qYHC05eILFWyq4fngqAR5QqaetfmovJv3y19u5qE8CP8vNcnNE7eO93wmllNOFBPrzo6HJfLluHweaKa58+iak67M9985QR6R0DuX2UekMSI7ibzcM8thlCxylCV0pdY6pOWnU1NXz0fLGl5qtravn3cISLugZ7zU33DTnkYl9mPOz0USGBLo7lHbThK6UOkfPhAiGdevMrGXFjS5itWhTBfuOVDPFw6r1tJWIeN3liU3RhK6U+oGpOWlsrzje6O3xswqKiY8I5sI+3jt56Ks0oSulfmDigEQiQgKY3aCa0Z7DJ8nbVM51w1II9OLJUF+l3xGl1A90CvLn6iHJzFuzh8oTNWeef29ZKfUGnxlu8TWa0JVSjZoyPI2a2no+XmGbHK2rN7xXWML5WXGkxXr/ZKgv0oSulGpU36RIBqVGM6vANjm6eEsFZZUnvfbO0I5AE7pSqklTh6eyed8xlhdXMrugmNiwICb0TXB3WKoJLSZ0EUkVkTwRWS8i60TkF43sM05EDovISvvXo9aEq5RypSsGJREW5M+zC7fw7w3lXDsshaAAPQ/0VI4sJ1YL/NIYs1xEIoAiEVlgjFnfYL9vjDGTnB+iUspdwoIDuHJIMu8stS0FcMNw71omt6Np8VetMWaPMWa5ffsosAFItjowpZRnmGq/omVE9xi6x4e7ORrVnFYt+Csi6cAQYGkjL48UkVXAbuBXxph1jbz/LuAugLQ0nVhRyhsMSInilxN6MsZLV1XsSKSxW3sb3VEkHPgaeMIY81GD1yKBemPMMRG5HPi7MaZHc8fLzs42hYWFbQxbKaU6JhEpMsZkN/aaQ7MbIhIIfAj8s2EyBzDGHDHGHLNvfw4Eioj3VFZVSikf4MhVLgK8DmwwxvytiX262vdDRHLsx215hXyllFJO48gY+mjgFmCNiKy0P/dbIA3AGPMScC0wTURqgZPAFOPoWI5SSimnaDGhG2O+BZpdW9IY8xzwnLOCUkop1Xp6h4BSSvkITehKKeUjNKErpZSP0ISulFI+wuEbi5zesEgFsKuNb48D9jsxnI7cni/3zdXt+XLfXN2eL/etve11M8Y0etuu2xJ6e4hIYVN3Sml7ntuWr7fny31zdXu+3Dcr29MhF6WU8hGa0JVSykd4a0J/RdvzyrZ8vT1f7pur2/PlvlnWnleOoSullPohbz1DV0op1YAmdKWU8hFel9BFZKeIrLEXo3Z6hQwReUNEykVk7VnPxYjIAhHZYv+3s8Xt/U5Eys4qun25k9pqtOC3Ff1rpi2r+hYiIgUissre3mP25zNEZKmIbBWRd0UkyOL2/iEiO87q32BntGc/tr+IrBCRufbHlvStmfas7NsPPtcWf+4aa8+qn81oEflARDaKyAYRGWlZ34wxXvUF7ATiLDz+WGAosPas5/4EPGTffgh40uL2foetjJ+z+5YIDLVvRwCbgb5W9K+ZtqzqmwDh9u1AbGUSRwDvYVvOGeAlYJrF7f0DuNain80HgXeAufbHlvStmfas7NsPPtcWf+4aa8+qn803gTvt20FAtFV987ozdKsZYxYDBxs8fSW2bwr2f6+yuD1LmKYLfju9f820ZQljc8z+MND+ZYDxwAf25532vWumPUuISAowEXjN/liwqG+Ntecmln3uXEVEorCdtL0OYIypMcZUYlHfvDGhG+BLESkSW9FpV0gwxuyxb+8FElzQ5s9EZLV9SMZpf2qeJucW/La0f/LD4uKW9M0+RLASKAcWANuASmNMrX2XUpz4S6Vhe8aY0/17wt6/p0Qk2EnNPQ38Bqi3P47Fwr410t5pVvQNGv9cW/lz2VQecfbPZgZQAfyfffjqNREJw6K+eWNCP98YMxS4DJguImNd2bix/Y1k9bWeLwKZwGBgD/BXZx5cbAW/PwTuN8YcOfs1Z/evkbYs65sxps4YMxhIAXKA3s46tiPtiUh/4GF7u8OBGOC/2tuOiEwCyo0xRe09Vjvbc3rfztLs59qCz11j7VnxsxmAbUj1RWPMEOA4tiGWM5zZN69L6MaYMvu/5cDH2D64VtsnIokA9n/LrWzMGLPPnizqgVdxYh+l8YLflvSvsbas7Ntp9j9p84CRQLSInK7MlQKUWdjepfahJmOMqQb+D+f0bzQwWUR2ArOxDbX8Hev69oP2RORti/oGNPm5tuxz11h7Fv1slgKlZ/319gG2BG9J37wqoYtImIhEnN4GLgbWNv8up5gD3Gbfvg341MrGTn+j7a7GSX20j7s2VvDb6f1rqi0L+xYvItH27U7ABGzj9nnYat6CE793TbS38awPqWAbF213/4wxDxtjUowx6cAUYKEx5iYs6lsT7d1sRd/sx2vqc23J566p9qz42TTG7AVKRKSX/akLgfVYlVOcOZtr9RfQHVhl/1oHPGJBG7Ow/bl1Cttv159gG6/8CtgC/BuIsbi9t4A1wGr7Nz7RSW2dj+1Pu9XASvvX5Vb0r5m2rOrbQGCF/bhrgUfP+pkpALYC7wPBFre30N6/tcDb2K+EceLPyzj+c9WJJX1rpj1L+tbU59qqz10z7Vn1szkYKLQf9xOgs1V901v/lVLKR3jVkItSSqmmaUJXSikfoQldKaV8hCZ0pZTyEZrQlVLKR2hCVz5DRIyIvH3W4wARqThrtcDJIvJQ00do8fj3i0ioM2JVygqa0JUvOQ70t9/oA7abfc7cPWmMmWOM+WM7jn8/oAldeSxN6MrXfI5tlUCAqdhu3AJARG4Xkefs2/8QkWdEZImIbBeRa+3Pjzt9Rm9//Jz9ffcBSUCeiOTZX7tYRPJFZLmIvG9ftwYR+aPY1oFfLSJ/cUmvlUITuvI9s4EpIhKC7W7Opc3sm4jtjtZJQLNn7saYZ4DdQK4xJldE4oD/Bi4ytkWeCoEHRSQW223j/YwxA4E/tLdDSjkqoOVdlPIexpjV9uV6p2I7W2/OJ8a2ENN6EWnt8qUjsBXs+M62tAlBQD5wGKgCXref6c9t8ghKOZkmdOWL5gB/wbYOSWwz+1WftS32f2s59y/XkCbeK9jWQJ/6gxdEcrAtwnQt8DNsqyMqZTkdclG+6A3gMWPMmja8dxfQV0SC7aspXnjWa0exldMD+B4YLSJZcGYFv572cfQoY8znwAPAoDb3QqlW0jN05XOMMaXAM218b4mIvIdtRcEd2FZUPO0VYL6I7LaPo98OzDqrcs9/Y0v6n9rH8AVbXU6lXEJXW1RKKR+hQy5KKeUjNKErpZSP0ISulFI+QhO6Ukr5CE3oSinlIzShK6WUj9CErpRSPuL/A8ZIdxnjQK2xAAAAAElFTkSuQmCC\n"
},
"metadata": {
"needs_background": "light"
}
}
]
}
]
} |