File size: 5,741 Bytes
c5b4aa7
 
 
 
 
 
 
47d2552
 
c5b4aa7
 
f8c1887
47d2552
 
 
 
c5b4aa7
 
 
 
 
47d2552
f8c1887
47d2552
f8c1887
 
 
 
 
 
47d2552
f8c1887
47d2552
f8c1887
 
47d2552
f8c1887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47d2552
 
f8c1887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47d2552
 
f8c1887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47d2552
f8c1887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47d2552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8c1887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47d2552
f8c1887
 
 
47d2552
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
---
base_model: unsloth/whisper-large-v3-turbo
tags:
- text-generation-inference
- transformers
- unsloth
- whisper
- creole
- haiti
license: apache-2.0
language:
- ht
datasets:
- jsbeaudry/cmu_haitian_creole_speech
- jsbeaudry/creole-text-voice
pipeline_tag: automatic-speech-recognition
---




# oswald-large-v3-turbo-m1

This model is a fine-tuned version of [openai/unsloth/whisper-large-v3-turbo](https://huggingface.co/unsloth/whisper-large-v3-turbo) on the **creole-text-voice** dataset.  
The main objective is to create a **99% accurate Haitian Creole Speech-to-Text model**, capable of transcribing diverse Haitian voices across accents, regions, and speaking styles.

---

## ๐Ÿง  Model description

**oswald-large-v3-turbo-m1** is optimized for Haitian Creole automatic speech recognition (ASR). It builds upon the Whisper architecture by OpenAI and adapts it to Haitian Creole through transfer learning and fine-tuning on a high-quality curated dataset containing hours of Haitian Creole audio-text pairs.

- **Architecture**: Whisper Large
- **Fine-tuned for**: Haitian Creole (Kreyรฒl Ayisyen)
- **Vocabulary**: Based on Latin script (Creole orthography), preserving diacritics and linguistic nuances.
- **Voice types**: Made with female and male synthetics and naturals voices.
- **Sampling rate**: 16kHz
- **Training objective**: Maximize transcription accuracy for everyday Creole speech

---


### โœ… Intended uses
- Transcribe Haitian Creole speech from:
  - Voice notes 
  - Radio shows
  - Interviews
  - Public speeches
  - Educational content
  - Synthetic voices 

- Enable Creole voice interfaces in:
  - Voice assistants
  - Transcription services
  - Language-learning tools
  - Chatbots and accessibility platforms

### โš ๏ธ Limitations
- May struggle with:
  - Extremely poor audio quality (e.g., heavy background noise)
  - Very fast or mumbled speech in some dialects
  - Long duration audio file
- Not optimized for **real-time transcription** on low-resource devices
- Fine-tuned on a specific dataset โ€“ might generalize less to completely unseen voice types or rare accents

---

## ๐Ÿ“Š Training and evaluation data

The model was trained on the **creole-text-voice** dataset, which includes:

- **7 hours** of Haitian Creole Synthetic speech
- **8 hours** of Haitian Creole Human speech 
- Annotated, time-aligned text transcripts following standard Creole orthography

### Sources for next steps:
- Public domain radio and podcast archives
- Open-access interviews and spoken-word audio
- Community-submitted voice samples

### Preprocessing steps:
- Voice Activity Detection (VAD)
- Noise filtering and audio normalization
- Manual transcript review and correction


## Model usage script

```python
# Load model directly
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
import librosa
import numpy as np
import torch

processor = AutoProcessor.from_pretrained("jsbeaudry/oswald-large-v3-turbo-m1")
model = AutoModelForSpeechSeq2Seq.from_pretrained("jsbeaudry/oswald-large-v3-turbo-m1")

def transcript (audio_file_path):
   
    # Load audio
    speech_array, sampling_rate = librosa.load(audio_file_path, sr=16000)

    # Convert the NumPy array to a PyTorch tensor
    speech_array_pt = torch.from_numpy(speech_array).unsqueeze(0)

    input_features = processor(speech_array, sampling_rate=sampling_rate, return_tensors="pt").input_features 

    # 2. Generate predictions
    predicted_ids = model.generate(input_features)

    # 3. Decode the predictions
    transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)

    # print(transcription)
    return transcription

text = transcript("/path_audio")

print(text)
```


## Model usage with gradio (UI)

```python

from transformers import pipeline
import gradio as gr

# Load Whisper model
print("Loading model...")
pipe = pipeline(model="jsbeaudry/oswald-large-v3-turbo-m1")
print("Model loaded successfully.")

# Transcription function
def transcribe(audio_path):
    if audio_path is None:
        return "Please upload or record an audio file first."
    result = pipe(audio_path)
    return result["text"]

# Build Gradio interface
def create_interface():
    with gr.Blocks(title="Whisper Medium - Haitian Creole") as demo:
        gr.Markdown("# ๐ŸŽ™๏ธ Whisper Medium Creole ASR")
        gr.Markdown(
            "Upload an audio file or record your voice in Haitian Creole. "
            "Then click **Transcribe** to see the result."
        )

        with gr.Row():
            with gr.Column():
                audio_input = gr.Audio(source="upload", type="filepath", label="๐ŸŽง Upload Audio")
            with gr.Column():
                transcribe_button = gr.Button("๐Ÿ” Transcribe")
                output_text = gr.Textbox(label="๐Ÿ“ Transcribed Text", lines=4)
                
    
        transcribe_button.click(fn=transcribe, inputs=audio_input, outputs=output_text)

    return demo

if __name__ == "__main__":
    interface = create_interface()
    interface.launch()
```

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-4
- num_epochs: 6.65
- hours: 2:52


Step	Training Loss	Validation Loss
100	0.565400	0.656878
200	0.481000	0.528320
300	0.457000	0.460658
400	0.822300	0.419748
500	0.298300	0.397042
.....
8300	0.049500	0.215643
8400	0.024700	0.210167




### Framework versions

- Transformers 4.46.1
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.20.3



## ๐Ÿ“Œ Citation

If you use this model, please cite:

```bibtex
@misc{whispermediumcreoleoswald2025,
  title={oswald large  turbo M1},
  author={Jean sauvenel beaudry},
  year={2025},
  howpublished={\url{https://huggingface.co/jsbeaudry}}
}